These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35748918)
1. Computational descriptor analysis on excited state behaviours of a series of TADF and non-TADF compounds. Ulukan P; Bas EE; Ozek RB; Dal Kaynak C; Monari A; Aviyente V; Catak S Phys Chem Chem Phys; 2022 Jul; 24(26):16167-16182. PubMed ID: 35748918 [TBL] [Abstract][Full Text] [Related]
2. Photophysical Properties of Benzophenone-Based TADF Emitters in Relation to Their Molecular Structure. Bas EE; Ulukan P; Monari A; Aviyente V; Catak S J Phys Chem A; 2022 Feb; 126(4):473-484. PubMed ID: 35061385 [TBL] [Abstract][Full Text] [Related]
3. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters. Zhao Z; Yan S; Ren Z Acc Chem Res; 2023 Jul; 56(14):1942-1952. PubMed ID: 37364229 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking DFT Functionals for Excited-State Calculations of Donor-Acceptor TADF Emitters: Insights on the Key Parameters Determining Reverse Inter-System Crossing. Hall D; Sancho-García JC; Pershin A; Beljonne D; Zysman-Colman E; Olivier Y J Phys Chem A; 2023 Jun; 127(21):4743-4757. PubMed ID: 37196185 [TBL] [Abstract][Full Text] [Related]
5. Theoretical Characterizations of TADF Materials: Roles of Δ Wang L; Ou Q; Peng Q; Shuai Z J Phys Chem A; 2021 Feb; 125(7):1468-1475. PubMed ID: 33587620 [TBL] [Abstract][Full Text] [Related]
6. The photophysical properties of sulfone-based TADF emitters in relation to their structural properties. Hepguler A; Ulukan P; Catak S Phys Chem Chem Phys; 2023 Nov; 25(45):31457-31470. PubMed ID: 37962481 [TBL] [Abstract][Full Text] [Related]
7. Highly Efficient Thermally Activated Delayed Fluorescence from Pyrazine-Fused Carbene Au(I) Emitters. Yang JG; Song XF; Wang J; Li K; Chang X; Tan LY; Liu CX; Yu FH; Cui G; Cheng G; To WP; Yang C; Che CM; Chen Y Chemistry; 2021 Dec; 27(71):17834-17842. PubMed ID: 34705307 [TBL] [Abstract][Full Text] [Related]
8. Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key! Hall D; Sancho-García JC; Pershin A; Ricci G; Beljonne D; Zysman-Colman E; Olivier Y J Chem Theory Comput; 2022 Aug; 18(8):4903-4918. PubMed ID: 35786892 [TBL] [Abstract][Full Text] [Related]
9. Modeling TADF in organic emitters requires a careful consideration of the environment and going beyond the Franck-Condon approximation. Mewes JM Phys Chem Chem Phys; 2018 May; 20(18):12454-12469. PubMed ID: 29700532 [TBL] [Abstract][Full Text] [Related]
10. Impact of secondary donor units on the excited-state properties and thermally activated delayed fluorescence (TADF) efficiency of pentacarbazole-benzonitrile emitters. Cho E; Liu L; Coropceanu V; Brédas JL J Chem Phys; 2020 Oct; 153(14):144708. PubMed ID: 33086823 [TBL] [Abstract][Full Text] [Related]
11. The effect of dark states on the intersystem crossing and thermally activated delayed fluorescence of naphthalimide-phenothiazine dyads. Cao L; Liu X; Zhang X; Zhao J; Yu F; Wan Y Beilstein J Org Chem; 2023; 19():1028-1046. PubMed ID: 37497052 [TBL] [Abstract][Full Text] [Related]
12. Tuning of the Singlet-Triplet Energy Gap of Donor-Linker-Acceptor Based Thermally Activated Delayed Fluorescent Emitters. Paras ; Ramachandran CN J Fluoresc; 2024 May; 34(3):1343-1351. PubMed ID: 37530934 [TBL] [Abstract][Full Text] [Related]
14. Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. Li W; Li M; Li W; Xu Z; Gan L; Liu K; Zheng N; Ning C; Chen D; Wu YC; Su SJ ACS Appl Mater Interfaces; 2021 Feb; 13(4):5302-5311. PubMed ID: 33470809 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study on photophysical properties of a series of functional pyrimidine-based organic light-emitting diodes emitters presenting thermally activated delayed fluorescence. Zhu Q; Guo X; Zhang J J Comput Chem; 2019 Jun; 40(16):1578-1585. PubMed ID: 30802324 [TBL] [Abstract][Full Text] [Related]
16. Conjugation-Induced Thermally Activated Delayed Fluorescence: Photophysics of a Carbazole-Benzophenone Monomer-to-Tetramer Molecular Series. Wei Q; Imbrasas P; Caldera-Cruz E; Cao L; Fei N; Thomas H; Scholz R; Lenk S; Voit B; Reineke S; Ge Z J Phys Chem A; 2021 Feb; 125(6):1345-1354. PubMed ID: 33555196 [TBL] [Abstract][Full Text] [Related]
17. Exploring the Theoretical Foundations of Thermally Activated Delayed Fluorescence (TADF) Emission: A Comprehensive TD-DFT Study on Phenothiazine Systems. Banerjee M; Anoop A Chemistry; 2024 Apr; 30(20):e202304206. PubMed ID: 38319588 [TBL] [Abstract][Full Text] [Related]
18. Efficient Direct Reverse Intersystem Crossing between Charge Transfer-Type Singlet and Triplet States in a Purely Organic Molecule. Wada Y; Wakisaka Y; Kaji H Chemphyschem; 2021 Apr; 22(7):625-632. PubMed ID: 33586264 [TBL] [Abstract][Full Text] [Related]
19. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence. Sun H; Zhong C; Brédas JL J Chem Theory Comput; 2015 Aug; 11(8):3851-8. PubMed ID: 26574466 [TBL] [Abstract][Full Text] [Related]
20. Organoboron Complexes as Thermally Activated Delayed Fluorescence (TADF) Materials for Organic Light-Emitting Diodes (OLEDs): A Computational Study. Asiri JA; Hasan WMI; Jedidi A; Elroby SA; Aziz SG; Osman OI Molecules; 2023 Oct; 28(19):. PubMed ID: 37836795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]