These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 35749204)
21. Fluctuations in irreversible quantum Otto engines. Jiao G; Zhu S; He J; Ma Y; Wang J Phys Rev E; 2021 Mar; 103(3-1):032130. PubMed ID: 33862833 [TBL] [Abstract][Full Text] [Related]
22. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound. Shiraishi N; Tajima H Phys Rev E; 2017 Aug; 96(2-1):022138. PubMed ID: 28950461 [TBL] [Abstract][Full Text] [Related]
23. Underdamped stochastic thermodynamic engines in contact with a heat bath with arbitrary temperature profile. Movilla Miangolarra O; Fu R; Taghvaei A; Chen Y; Georgiou TT Phys Rev E; 2021 Jun; 103(6-1):062103. PubMed ID: 34271726 [TBL] [Abstract][Full Text] [Related]
24. Optimal Control of Hydrogen Atom-Like Systems as Thermodynamic Engines in Finite Time. Schön JC Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286835 [TBL] [Abstract][Full Text] [Related]
25. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221 [TBL] [Abstract][Full Text] [Related]
26. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Quan HT Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751 [TBL] [Abstract][Full Text] [Related]
27. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194 [TBL] [Abstract][Full Text] [Related]
28. Otto Engine: Classical and Quantum Approach. Peña FJ; Negrete O; Cortés N; Vargas P Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527 [TBL] [Abstract][Full Text] [Related]
29. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Gelbwaser-Klimovsky D; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684 [TBL] [Abstract][Full Text] [Related]
31. Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings. Giri SK; Goswami HP Phys Rev E; 2022 Aug; 106(2-1):024131. PubMed ID: 36109996 [TBL] [Abstract][Full Text] [Related]
32. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle. Chen JF; Sun CP; Dong H Phys Rev E; 2019 Dec; 100(6-1):062140. PubMed ID: 31962481 [TBL] [Abstract][Full Text] [Related]
33. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling. Ito K; Hayashi M Phys Rev E; 2018 Jan; 97(1-1):012129. PubMed ID: 29448373 [TBL] [Abstract][Full Text] [Related]
34. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime. Yamamoto K; Hatano N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226 [TBL] [Abstract][Full Text] [Related]
35. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle. Kennedy IR; Hodzic M Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401 [TBL] [Abstract][Full Text] [Related]
36. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine. Dann R; Kosloff R; Salamon P Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287023 [TBL] [Abstract][Full Text] [Related]
37. Entropic anomaly and maximal efficiency of microscopic heat engines. Bo S; Celani A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):050102. PubMed ID: 23767467 [TBL] [Abstract][Full Text] [Related]
38. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines. Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847 [TBL] [Abstract][Full Text] [Related]
39. Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics. Guéry-Odelin D; Jarzynski C; Plata CA; Prados A; Trizac E Rep Prog Phys; 2023 Jan; 86(3):. PubMed ID: 36535018 [TBL] [Abstract][Full Text] [Related]
40. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]