These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35749266)

  • 21. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocatalytic Hydrogen Production and Carbon Dioxide Reduction Catalyzed by an Artificial Cobalt Hemoprotein.
    Udry GAO; Tiessler-Sala L; Pugliese E; Urvoas A; Halime Z; Maréchal JD; Mahy JP; Ricoux R
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO
    An L; De La Torre P; Smith PT; Narouz MR; Chang CJ
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202209396. PubMed ID: 36538739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO
    Lashgari A; Williams CK; Glover JL; Wu Y; Chai J; Jiang JJ
    Chemistry; 2020 Dec; 26(70):16774-16781. PubMed ID: 32701198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct observation of intermediates formed during steady-state electrocatalytic O2 reduction by iron porphyrins.
    Sengupta K; Chatterjee S; Samanta S; Dey A
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8431-6. PubMed ID: 23650367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of 2,4,6-trichlorophenol with peroxymonosulfate catalyzed by soluble and supported iron porphyrins.
    Günay T; Çimen Y
    Environ Pollut; 2017 Dec; 231(Pt 1):1013-1020. PubMed ID: 28898954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H
    Xie Y; Xu M; Wang L; Liang H; Wang L; Song Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110864. PubMed ID: 32409033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. O2 reduction reaction by biologically relevant anionic ligand bound iron porphyrin complexes.
    Samanta S; Das PK; Chatterjee S; Sengupta K; Mondal B; Dey A
    Inorg Chem; 2013 Nov; 52(22):12963-71. PubMed ID: 24171513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the Interplay of the Brønsted Acidity of Catalyst Ancillary Groups and the Solution Components in Iron-porphyrin-Mediated Carbon Dioxide Reduction.
    Sonea A; Crudo NR; Warren JJ
    J Am Chem Soc; 2024 Feb; 146(6):3721-3731. PubMed ID: 38307036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CO
    Davethu PA; de Visser SP
    J Phys Chem A; 2019 Aug; 123(30):6527-6535. PubMed ID: 31283234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction.
    Yao B; He Y; Wang S; Sun H; Liu X
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass Transport Analysis of the Enhanced Buffer Capacity of the Bicarbonate-CO
    Al-Gousous J; Sun KX; McNamara DP; Hens B; Salehi N; Langguth P; Bermejo M; Amidon GE; Amidon GL
    Mol Pharm; 2018 Nov; 15(11):5291-5301. PubMed ID: 30362350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct evidence for an iron(IV)-oxo porphyrin pi-cation radical as an active oxidant in catalytic oxygenation reactions.
    Han AR; Jin Jeong Y; Kang Y; Lee JY; Sook Seo M; Nam W
    Chem Commun (Camb); 2008 Mar; (9):1076-8. PubMed ID: 18292895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selectivity in Electrochemical CO
    Saha P; Amanullah S; Dey A
    Acc Chem Res; 2022 Jan; 55(2):134-144. PubMed ID: 34989553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decarboxylation of [1-(13)C]leucine by hydroxyl radicals.
    Guitton J; Tinardon F; Lamrini R; Lacan P; Desage M; Francina A
    Free Radic Biol Med; 1998 Aug; 25(3):340-5. PubMed ID: 9680180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.
    Bassan A; Borowski T; Schofield CJ; Siegbahn PE
    Chemistry; 2006 Nov; 12(34):8835-46. PubMed ID: 16933342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst.
    Costentin C; Drouet S; Robert M; Savéant JM
    Science; 2012 Oct; 338(6103):90-4. PubMed ID: 23042890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnesium porphyrins with relevance to chlorophylls.
    Borah KD; Bhuyan J
    Dalton Trans; 2017 May; 46(20):6497-6509. PubMed ID: 28447697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Through-Space Electrostatic Interactions Surpass Classical Through-Bond Electronic Effects in Enhancing CO
    Khadhraoui A; Gotico P; Leibl W; Halime Z; Aukauloo A
    ChemSusChem; 2021 Mar; 14(5):1308-1315. PubMed ID: 33387402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.