These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35749305)

  • 21. Catalytic carbene insertion into C-H bonds.
    Doyle MP; Duffy R; Ratnikov M; Zhou L
    Chem Rev; 2010 Feb; 110(2):704-24. PubMed ID: 19785457
    [No Abstract]   [Full Text] [Related]  

  • 22. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereoselective Synthesis of Highly Substituted Tetrahydrofurans through Diverted Carbene O-H Insertion Reaction.
    Nicolle SM; Lewis W; Hayes CJ; Moody CJ
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8485-9. PubMed ID: 26068952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes.
    Bersellini M; Roelfes G
    Org Biomol Chem; 2017 Apr; 15(14):3069-3073. PubMed ID: 28321451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.
    Mousseau JJ; Charette AB
    Acc Chem Res; 2013 Feb; 46(2):412-24. PubMed ID: 23098328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous synthesis and use of N-heterocyclic carbene copper(I) complexes from insoluble Cu2O.
    Opalka SM; Park JK; Longstreet AR; McQuade DT
    Org Lett; 2013 Mar; 15(5):996-9. PubMed ID: 23406503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold.
    Coquière D; Bos J; Beld J; Roelfes G
    Angew Chem Int Ed Engl; 2009; 48(28):5159-62. PubMed ID: 19557756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic asymmetric functionalization of aromatic C-H bonds by electrophilic trapping of metal-carbene-induced zwitterionic intermediates.
    Jia S; Xing D; Zhang D; Hu W
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13098-101. PubMed ID: 25195569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineered and Artificial Metalloenzymes for Selective C-H Functionalization.
    Ren X; Fasan R
    Curr Opin Green Sustain Chem; 2021 Oct; 31():. PubMed ID: 34395950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct functionalization of indoles: copper-catalyzed malonyl carbenoid insertions.
    Johansen MB; Kerr MA
    Org Lett; 2010 Nov; 12(21):4956-9. PubMed ID: 20936858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds.
    Hoveyda AH; Zhou Y; Shi Y; Brown MK; Wu H; Torker S
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21304-21359. PubMed ID: 32364640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conjugate reduction of alpha,beta-unsaturated carbonyl compounds catalyzed by a copper carbene complex.
    Jurkauskas V; Sadighi JP; Buchwald SL
    Org Lett; 2003 Jul; 5(14):2417-20. PubMed ID: 12841744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper-catalyzed C-O bond formation: an efficient one-pot highly regioselective synthesis of furans from (2-furyl)carbene complexes.
    Cao H; Zhan H; Cen J; Lin J; Lin Y; Zhu Q; Fu M; Jiang H
    Org Lett; 2013 Mar; 15(5):1080-3. PubMed ID: 23413974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Schiff base compounds as artificial metalloenzymes.
    Shahraki S
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112727. PubMed ID: 35921691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.