These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35749455)

  • 1. Protein Hydrogels with Reversibly Patterned Multidimensional Fluorescent Images for Information Storage.
    Duan T; Bian Q; Li H
    Biomacromolecules; 2022 Jul; 23(7):3009-3016. PubMed ID: 35749455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Responsive Dynamic Protein Hydrogels Based on LOVTRAP.
    Duan T; Bian Q; Li H
    Langmuir; 2021 Aug; 37(33):10214-10222. PubMed ID: 34396769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization.
    Hammer JA; Ruta A; West JL
    Ann Biomed Eng; 2020 Jul; 48(7):1885-1894. PubMed ID: 31720906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decorating a Blank Slate Protein Hydrogel: A General and Robust Approach for Functionalizing Protein Hydrogels.
    Gao X; Lyu S; Li H
    Biomacromolecules; 2017 Nov; 18(11):3726-3732. PubMed ID: 28953366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Cation-Responsive and Excitation-Dependent Nontraditional Multicolor Fluorescent Hydrogels for Multidimensional Information Encryption.
    Deng J; Wu H; Xie W; Jia H; Xia Z; Wang H
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39967-39975. PubMed ID: 34374507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-Modified Chitosan Patterning Hydrogel with Dynamic Information Storage Ability.
    Li Y; Yang C; Hu F; Hu H; Xu Y; Deng H; Du Y; Shi X
    ACS Appl Mater Interfaces; 2024 May; 16(17):21463-21471. PubMed ID: 38650081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Characterization of Calmodulin-Based Copolymeric Hydrogels.
    Fox CS; Berry HA; Pedigo S
    Biomacromolecules; 2020 Jun; 21(6):2073-2086. PubMed ID: 32320226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drawing High-Definition and Reversible Hydrogel Paintings with Grayscale Exposure.
    Jiang P; Yan C; Ji Z; Guo Y; Zhang X; Jia X; Wang X; Zhou F
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42586-42593. PubMed ID: 31623432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anions reversibly responsive luminescent nanocellulose hydrogels for cancer spheroids culture and release.
    Hai J; Zeng X; Zhu Y; Wang B
    Biomaterials; 2019 Feb; 194():161-170. PubMed ID: 30605824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses.
    Teng K; An Q; Chen Y; Zhang Y; Zhao Y
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1302-1337. PubMed ID: 33764038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics.
    Gilshteyn EP; Lin S; Kondrashov VA; Kopylova DS; Tsapenko AP; Anisimov AS; Hart AJ; Zhao X; Nasibulin AG
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28069-28075. PubMed ID: 30052424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices.
    Rong Q; Lei W; Liu M
    Chemistry; 2018 Nov; 24(64):16930-16943. PubMed ID: 29786914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-level encryption of information in morphing hydrogels with patterned fluorescence.
    Hou LX; Ding H; Hao XP; Zhu CN; Du M; Wu ZL; Zheng Q
    Soft Matter; 2022 Mar; 18(11):2149-2156. PubMed ID: 35212340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Polymeric Systems: A Biomedical Viewpoint.
    Adibfar A; Hosseini S; Baghaban Eslaminejad M
    Adv Exp Med Biol; 2020; 1298():133-148. PubMed ID: 32592154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven assembly of biocompatible fluorescent chitosan hydrogels with self-healing ability.
    Guaresti O; Crocker L; Palomares T; Alonso-Varona A; Eceiza A; Fruk L; Gabilondo N
    J Mater Chem B; 2020 Nov; 8(42):9804-9811. PubMed ID: 33030500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codes in Code: AIE Supramolecular Adhesive Hydrogels Store Huge Amounts of Information.
    Yang Y; Li Q; Zhang H; Liu H; Ji X; Tang BZ
    Adv Mater; 2021 Nov; 33(45):e2105418. PubMed ID: 34541727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.