BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35749469)

  • 1. District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan.
    Tempa K
    PLoS One; 2022; 17(6):e0270467. PubMed ID: 35749469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flood risk assessment of Wuhan, China, using a multi-criteria analysis model with the improved AHP-Entropy method.
    Chen Y; Wang D; Zhang L; Guo H; Ma J; Gao W
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96001-96018. PubMed ID: 37561303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique-a case study of Patan district Gujarat, India.
    Gahalod NSS; Rajeev K; Pant PK; Binjola S; Yadav RL; Meena RL
    Environ Monit Assess; 2024 Mar; 196(4):338. PubMed ID: 38430346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping flood vulnerability using an analytical hierarchy process (AHP) in the Metropolis of Mumbai.
    Mann R; Gupta A
    Environ Monit Assess; 2023 Nov; 195(12):1534. PubMed ID: 38008879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods.
    Ghanem MAAN; Zaifoglu H
    Environ Sci Pollut Res Int; 2024 May; 31(22):32875-32900. PubMed ID: 38671266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-spatial flood risk assessment in Nagaon district, Assam (India) using GIS-based multi-criteria decision analysis (MCDA) and analytical hierarchy process (AHP).
    Bhuyan MJ; Deka N; Saikia A
    Risk Anal; 2024 Apr; 44(4):817-832. PubMed ID: 37474467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-criteria decision-making approach to vulnerability assessment of rural flooding in Khyber Pakhtunkhwa Province, Pakistan.
    Khan A; Gong Z; Shah AA; Haq M
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):56786-56801. PubMed ID: 36929259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flood vulnerability assessment in the Jamuna river floodplain using multi-criteria decision analysis: A case study in Jamalpur district, Bangladesh.
    Nahin KTK; Islam SB; Mahmud S; Hossain I
    Heliyon; 2023 Mar; 9(3):e14520. PubMed ID: 37020948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework.
    Vaddiraju SC; Talari R
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107021-107040. PubMed ID: 36520296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency evaluation of low impact development practices on urban flood risk.
    Ayoubi Ayoublu S; Vafakhah M; Pourghasemi HR
    J Environ Manage; 2024 Apr; 356():120467. PubMed ID: 38484592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: case study of New York City.
    Zahmatkesh Z; Karamouz M
    Environ Monit Assess; 2017 Oct; 189(11):567. PubMed ID: 29043571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coastal Flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches.
    Asiri MM; Aldehim G; Alruwais N; Allafi R; Alzahrani I; Nouri AM; Assiri M; Ahmed NA
    Environ Res; 2024 Mar; 245():118042. PubMed ID: 38160971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flood Hazard Zoning of Upper Awash River Basin, Ethiopia, Using the Analytical Hierarchy Process (AHP) as Compared to Sensitivity Analysis.
    Mekonnen TM; Mitiku AB; Woldemichael AT
    ScientificWorldJournal; 2023; 2023():1675634. PubMed ID: 37077513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global-scale river flood vulnerability in the last 50 years.
    Tanoue M; Hirabayashi Y; Ikeuchi H
    Sci Rep; 2016 Oct; 6():36021. PubMed ID: 27782160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flood risk mapping and analysis using an integrated framework of machine learning models and analytic hierarchy process.
    Bui QD; Luu C; Mai SH; Ha HT; Ta HT; Pham BT
    Risk Anal; 2022 Sep; ():. PubMed ID: 36088657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Livelihood Vulnerability to Flood Hazard: Understanding from the Flood-prone Haor Ecosystem of Bangladesh.
    Hoq MS; Raha SK; Hossain MI
    Environ Manage; 2021 Mar; 67(3):532-552. PubMed ID: 33609148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urban flood risk assessment characterizing the relationship among hazard, exposure, and vulnerability.
    Bin L; Xu K; Pan H; Zhuang Y; Shen R
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):86463-86477. PubMed ID: 37414992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A participatory community case study of periurban coastal flood vulnerability in southern Ecuador.
    Tauzer E; Borbor-Cordova MJ; Mendoza J; De La Cuadra T; Cunalata J; Stewart-Ibarra AM
    PLoS One; 2019; 14(10):e0224171. PubMed ID: 31652292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.