These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35749565)

  • 1. Size-Discriminative DNA Nanocage Framework Enables Sensitive and High-Fidelity Imaging of Mature MicroRNA in Living Cells.
    Li X; Yang F; Li S; Yuan R; Xiang Y
    Anal Chem; 2022 Jul; 94(27):9927-9933. PubMed ID: 35749565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous Enzyme-Driven Amplified DNA Nanocage Probe for Selective and Sensitive Imaging of Mature MicroRNAs in Living Cancer Cells.
    Gao Y; Gong C; Chen M; Huan S; Zhang XB; Ke G
    Anal Chem; 2024 Jun; 96(23):9453-9459. PubMed ID: 38818873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA tetrahedral molecular sieve for size-selective fluorescence sensing of miRNA 21 in living cells.
    Peng C; Leng M; Gao Y; Feng Q; Miao X
    Talanta; 2024 Aug; 276():126218. PubMed ID: 38759363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hairpin/DNA ring ternary probes for highly sensitive detection and selective discrimination of microRNA among family members.
    Liu X; Zou M; Li D; Yuan R; Xiang Y
    Anal Chim Acta; 2019 Oct; 1076():138-143. PubMed ID: 31203958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of mature microRNAs using pincer probes and real-time PCR amplification.
    Huang T; Yang J; Liu G; Jin W; Liu Z; Zhao S; Yao M
    PLoS One; 2015; 10(3):e0120160. PubMed ID: 25768430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient fluorescent method for selective detection of mature miRNA species.
    Kato Y
    Nucleic Acids Symp Ser (Oxf); 2008; (52):71-2. PubMed ID: 18776258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-selective DNA nanocage-based activatable CRISPR-Cas12a for sensitive and accurate detection of mature microRNA.
    Fu X; Yin Y; Zhang M; Peng F; Shi Y; Liu Y; Tan Y; Zhao Z; Yin X; Song J; Ke G; Zhang XB
    Chem Commun (Camb); 2021 Apr; 57(26):3291-3294. PubMed ID: 33656042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.
    Li W; Jiang W; Ding Y; Wang L
    Biosens Bioelectron; 2015 Sep; 71():401-406. PubMed ID: 25950935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitively distinguishing intracellular precursor and mature microRNA abundance.
    Yang F; Cheng Y; Cao Y; Dong H; Lu H; Zhang K; Meng X; Liu C; Zhang X
    Chem Sci; 2019 Feb; 10(6):1709-1715. PubMed ID: 30842835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional MoS
    Yang F; Liu P; Meng X; Lu H; Cao Y; Dai W; Wang C; Dong H
    Anal Bioanal Chem; 2019 Jul; 411(19):4559-4567. PubMed ID: 30976895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable MnO
    Li J; Li D; Yuan R; Xiang Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5717-5724. PubMed ID: 28124559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dandelion-like liposomes-encoded magnetic bead probe-based toehold-mediated DNA circuit for the amplification detection of MiRNA.
    Kong Y; Liu X; Liu C; Xue Q; Li X; Wang H
    Analyst; 2019 Aug; 144(15):4694-4701. PubMed ID: 31268436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D DNA Scaffold-Assisted Dual Intramolecular Amplifications for Multiplexed and Sensitive MicroRNA Imaging in Living Cells.
    Li X; Yang F; Gan C; Yuan R; Xiang Y
    Anal Chem; 2021 Jul; 93(28):9912-9919. PubMed ID: 34232629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA.
    Wang R; Wang L; Zhao H; Jiang W
    Biosens Bioelectron; 2016 Dec; 86():834-839. PubMed ID: 27494806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-fueled molecular machine enables enzyme-free target recycling amplification for electronic detection of microRNA from cancer cells with highly minimized background noise.
    Shi K; Dou B; Yang C; Chai Y; Yuan R; Xiang Y
    Anal Chem; 2015 Aug; 87(16):8578-83. PubMed ID: 26194786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cascade Signal Amplification Based on Dynamic DNA Nanodevices and CRISPR/Cas12a Trans-cleavage for Highly Sensitive MicroRNA Sensing.
    Li X; Zhang D; Gan X; Liu P; Zheng Q; Yang T; Tian G; Ding S; Yan Y
    ACS Synth Biol; 2021 Jun; 10(6):1481-1489. PubMed ID: 34011151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable and cascaded catalytic hairpin assembly for amplified sensing of microRNA biomarkers in living cells.
    Li X; Yang F; Gan C; Yuan R; Xiang Y
    Biosens Bioelectron; 2022 Feb; 197():113809. PubMed ID: 34814030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells.
    Shi K; Dou B; Yang J; Yuan R; Xiang Y
    Anal Chim Acta; 2016 Apr; 916():1-7. PubMed ID: 27016432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular low-abundance microRNA imaging by a NIR-assisted entropy-driven DNA system.
    Lu H; Yang F; Liu B; Zhang K; Cao Y; Dai W; Li W; Dong H
    Nanoscale Horiz; 2019 Mar; 4(2):472-479. PubMed ID: 32254100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-signal mode based on metal-organic framework coupled cascaded nucleic acid circuits for accurate and sensitive detection of serum circulating miRNAs.
    Zhang S; Xu S; Li X; Ma R; Cheng G; Xue Q; Wang H
    Chem Commun (Camb); 2020 Apr; 56(31):4288-4291. PubMed ID: 32182314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.