These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35749816)

  • 1. Sub-5 nm nanogap electrodes towards single-molecular biosensing.
    He Q; Tang L
    Biosens Bioelectron; 2022 Oct; 213():114486. PubMed ID: 35749816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
    Shi X; Verschueren D; Pud S; Dekker C
    Small; 2018 May; 14(18):e1703307. PubMed ID: 29251411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review.
    Adam T; Dhahi TS; Gopinath SCB; Hashim U; Uda MNA
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1395-1417. PubMed ID: 34143905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanogap biosensors for electrical and label-free detection of biomolecular interactions.
    Kyu Kim S; Cho H; Park HJ; Kwon D; Min Lee J; Hyun Chung B
    Nanotechnology; 2009 Nov; 20(45):455502. PubMed ID: 19822932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental study towards a nanogap dielectric biosensor.
    Yi M; Jeong KH; Lee LP
    Biosens Bioelectron; 2005 Jan; 20(7):1320-6. PubMed ID: 15590285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Aptamer-Based Nanopore Sensing at Single-Molecule Resolution.
    Lv P; Zhang W; Yang Y; Gao H; Li S; Tan CS; Ming D
    Chem Asian J; 2022 Aug; 17(16):e202200364. PubMed ID: 35644914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing.
    Zhao Q; Yang H; Nie B; Luo Y; Shao J; Li G
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3580-3590. PubMed ID: 34983178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
    Barik A; Chen X; Oh SH
    Nano Lett; 2016 Oct; 16(10):6317-6324. PubMed ID: 27602796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic-Nanopore Biosensors for Superior Single-Molecule Detection.
    Spitzberg JD; Zrehen A; van Kooten XF; Meller A
    Adv Mater; 2019 Jun; 31(23):e1900422. PubMed ID: 30941823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-State Nanopore/Nanochannel Sensing of Single Entities.
    Yi W; Zhang C; Zhang Q; Zhang C; Lu Y; Yi L; Wang X
    Top Curr Chem (Cham); 2023 Apr; 381(4):13. PubMed ID: 37103594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications.
    Garoli D; Yamazaki H; Maccaferri N; Wanunu M
    Nano Lett; 2019 Nov; 19(11):7553-7562. PubMed ID: 31587559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High precision fabrication and positioning of nanoelectrodes in a nanopore.
    Ivanov AP; Freedman KJ; Kim MJ; Albrecht T; Edel JB
    ACS Nano; 2014 Feb; 8(2):1940-8. PubMed ID: 24446951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects.
    Ghobaei Namhil Z; Kemp C; Verrelli E; Iles A; Pamme N; Adawi AM; Kemp NT
    Phys Chem Chem Phys; 2019 Jan; 21(2):681-691. PubMed ID: 30543220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopore integrated nanogaps for DNA detection.
    Fanget A; Traversi F; Khlybov S; Granjon P; Magrez A; Forró L; Radenovic A
    Nano Lett; 2014 Jan; 14(1):244-9. PubMed ID: 24308689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Manufacturing of Nanogaps.
    Dubois V; Bleiker SJ; Stemme G; Niklaus F
    Adv Mater; 2018 Nov; 30(46):e1801124. PubMed ID: 30156331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Utility of Nanopore Technology for Protein and Peptide Sensing.
    Robertson JWF; Reiner JE
    Proteomics; 2018 Sep; 18(18):e1800026. PubMed ID: 29952121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanogap electrodes.
    Li T; Hu W; Zhu D
    Adv Mater; 2010 Jan; 22(2):286-300. PubMed ID: 20217688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating DNA translocation by a controlled deformation of a PDMS nanochannel device.
    Fanzio P; Manneschi C; Angeli E; Mussi V; Firpo G; Ceseracciu L; Repetto L; Valbusa U
    Sci Rep; 2012; 2():791. PubMed ID: 23145315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of solid-state nanopores and its perspectives.
    Kudr J; Skalickova S; Nejdl L; Moulick A; Ruttkay-Nedecky B; Adam V; Kizek R
    Electrophoresis; 2015 Oct; 36(19):2367-79. PubMed ID: 26046318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-Resolution Detection of DNA Nanostructures Using a Nanopore.
    Chen K; Choudhary A; Sandler SE; Maffeo C; Ducati C; Aksimentiev A; Keyser UF
    Adv Mater; 2023 Mar; 35(12):e2207434. PubMed ID: 36630969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.