These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35749883)
1. Differentiating ultra-high temperature milk and reconstituted milk using an untargeted peptidomic approach with chemometrics. Tan D; Zhang H; Tan S; Xue Y; Jia M; Zhu X; Wu H; Chen G Food Chem; 2022 Nov; 394():133528. PubMed ID: 35749883 [TBL] [Abstract][Full Text] [Related]
2. Identification of sixteen peptides reflecting heat and/or storage induced processes by profiling of commercial milk samples. Ebner J; Baum F; Pischetsrieder M J Proteomics; 2016 Sep; 147():66-75. PubMed ID: 27016039 [TBL] [Abstract][Full Text] [Related]
3. Establishing an untargeted-to-MRM liquid chromatography-mass spectrometry method for discriminating reconstituted milk from ultra-high temperature milk. Tan D; Zhang X; Su M; Jia M; Zhu D; Kebede B; Wu H; Chen G Food Chem; 2021 Feb; 337():127946. PubMed ID: 32927223 [TBL] [Abstract][Full Text] [Related]
4. Identification of peptides reflecting the storage of UHT milk by MALDI-TOF-MS peptide profiling. Dalabasmaz S; Dittrich D; Kellner I; Drewello T; Pischetsrieder M J Proteomics; 2019 Sep; 207():103444. PubMed ID: 31323422 [TBL] [Abstract][Full Text] [Related]
5. Simultaneously tracing the geographical origin and presence of bovine milk in Italian water buffalo Mozzarella cheese using MALDI-TOF data of casein signature peptides. Caira S; Pinto G; Nicolai MA; Chianese L; Addeo F Anal Bioanal Chem; 2016 Aug; 408(20):5609-21. PubMed ID: 27299776 [TBL] [Abstract][Full Text] [Related]
6. Identification of the Peptide PyroQ-βCasein Dalabasmaz S; Ebner J; Pischetsrieder M J Agric Food Chem; 2017 Dec; 65(49):10781-10791. PubMed ID: 29148742 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the peptide profile of milk and its changes during thermal treatment and storage. Meltretter J; Schmidt A; Humeny A; Becker CM; Pischetsrieder M J Agric Food Chem; 2008 May; 56(9):2899-906. PubMed ID: 18419126 [TBL] [Abstract][Full Text] [Related]
8. Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoelectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. Weber D; Raymond P; Ben-Rejeb S; Lau B J Agric Food Chem; 2006 Mar; 54(5):1604-10. PubMed ID: 16506808 [TBL] [Abstract][Full Text] [Related]
9. Fast screening and quantitative evaluation of internally deleted goat alphas1-casein variants by mass spectrometric detection of the signature peptides. Picariello G; Ferranti P; Caira S; Fierro O; Chianese L; Addeo F Rapid Commun Mass Spectrom; 2009 Mar; 23(6):775-87. PubMed ID: 19219844 [TBL] [Abstract][Full Text] [Related]
10. Quantification of bovine β-casein allergen in baked foodstuffs based on ultra-performance liquid chromatography with tandem mass spectrometry. Chen Q; Zhang J; Ke X; Lai S; Tao B; Yang J; Mo W; Ren Y Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(1):25-34. PubMed ID: 25413212 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides. Baum F; Fedorova M; Ebner J; Hoffmann R; Pischetsrieder M J Proteome Res; 2013 Dec; 12(12):5447-62. PubMed ID: 24245561 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive species- and processing-specific peptide profiling of pasteurized, extended shelf-life and ultra-high temperature milk from cow, goat, sheep, buffalo, and mare. Zenk N; Laumer F; Dalabasmaz S; Stützer J; Mauser A; Pischetsrieder M Food Chem; 2024 Apr; 438():137973. PubMed ID: 37979257 [TBL] [Abstract][Full Text] [Related]
13. Modified peptides as indicators for thermal and nonthermal reactions in processed milk. Meltretter J; Wüst J; Pischetsrieder M J Agric Food Chem; 2014 Nov; 62(45):10903-15. PubMed ID: 25329723 [TBL] [Abstract][Full Text] [Related]
14. Interplay between Residual Protease Activity in Commercial Lactases and the Subsequent Digestibility of β-Casein in a Model System. Zhao D; Le TT; Larsen LB; Nian Y; Wang C; Li C; Zhou G Molecules; 2019 Aug; 24(16):. PubMed ID: 31398828 [TBL] [Abstract][Full Text] [Related]
15. Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. Anema SG; Li Y J Agric Food Chem; 2003 Mar; 51(6):1640-6. PubMed ID: 12617598 [TBL] [Abstract][Full Text] [Related]
16. Lactosylated casein phosphopeptides as specific indicators of heated milks. Pinto G; Caira S; Cuollo M; Fierro O; Nicolai MA; Chianese L; Addeo F Anal Bioanal Chem; 2012 Feb; 402(5):1961-72. PubMed ID: 22200923 [TBL] [Abstract][Full Text] [Related]
17. Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks. Moreno-Montoro M; Jauregi P; Navarro-Alarcón M; Olalla-Herrera M; Giménez-Martínez R; Amigo L; Miralles B Anal Bioanal Chem; 2018 Jun; 410(15):3597-3606. PubMed ID: 29523944 [TBL] [Abstract][Full Text] [Related]
18. Analysis of A1-type and A2-type β-casein in Maiwa Yak and Pien-niu milk by HPLC-high-resolution MS and tandem MS. Chen Y; Ren Y; Wang L; Huang Z J Sep Sci; 2021 May; 44(9):1913-1922. PubMed ID: 33665927 [TBL] [Abstract][Full Text] [Related]
19. Contributions of terminal peptides to the associative behavior of alphas1-casein. Malin EL; Brown EM; Wickham ED; Farrell HM J Dairy Sci; 2005 Jul; 88(7):2318-28. PubMed ID: 15956295 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of a novel casein anticoagulant peptide derived from in vivo digestion. Tu M; Liu H; Cheng S; Mao F; Chen H; Fan F; Lu W; Du M Food Funct; 2019 May; 10(5):2552-2559. PubMed ID: 30994118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]