These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35749899)
1. Microplastics in dyeing sludge: Whether do they affect sludge incineration? Shi X; Li J; Shang L; Wang S; Chen S; Liu J; Mei M; Xue Y; Wang T J Hazard Mater; 2022 Sep; 437():129394. PubMed ID: 35749899 [TBL] [Abstract][Full Text] [Related]
2. Co-combustion behavior of dyeing sludge and rice husk by using TG-MS: Thermal conversion, gas evolution, and kinetic analyses. Wang T; Fu T; Chen K; Cheng R; Chen S; Liu J; Mei M; Li J; Xue Y Bioresour Technol; 2020 Sep; 311():123527. PubMed ID: 32422554 [TBL] [Abstract][Full Text] [Related]
3. Study on the effect of biomass on sulfur release behavior from dyeing sludge incineration: Focusing on in-situ sulfur fixation mechanism based on model compounds. Zhang Q; Chen Y; Xue Y; Chen S; Liu J; Mei M; Li J; Ren L; Wang T Sci Total Environ; 2023 Jun; 875():162544. PubMed ID: 36871733 [TBL] [Abstract][Full Text] [Related]
4. Microplastics as emerging contaminants in textile dyeing sludge: Their impacts on co-combustion/pyrolysis products, residual metals, and temperature dependency of emissions. Ding Z; Li W; Chen Z; Wang L; Huang S; Evrendilek F; Yang C; Cai H; Zhong S; Yang Z; Liu J J Hazard Mater; 2024 Mar; 466():133465. PubMed ID: 38246059 [TBL] [Abstract][Full Text] [Related]
5. Combustion characteristics of biodried sewage sludge. Hao Z; Yang B; Jahng D Waste Manag; 2018 Feb; 72():296-305. PubMed ID: 29153905 [TBL] [Abstract][Full Text] [Related]
6. Effect of electromagnetic induction drying on the drying-incineration process of dyeing sludge: focus on migration and conversion of sulfur. Lu M; Xue Y; Zhao H; Zhang X; Wang T Waste Manag; 2023 Oct; 171():522-531. PubMed ID: 37806160 [TBL] [Abstract][Full Text] [Related]
7. Effects of chronic exposure to different sizes and polymers of microplastics on the characteristics of activated sludge. Xu J; Wang X; Zhang Z; Yan Z; Zhang Y Sci Total Environ; 2021 Aug; 783():146954. PubMed ID: 33866171 [TBL] [Abstract][Full Text] [Related]
8. Online TG-FTIR-MS analysis of the catalytic pyrolysis of polyethylene and polyvinyl chloride microplastics. Liu X; Tian K; Chen Z; Wei W; Xu B; Ni BJ J Hazard Mater; 2023 Jan; 441():129881. PubMed ID: 36063710 [TBL] [Abstract][Full Text] [Related]
9. Long-Term Effects of Polyvinyl Chloride Microplastics on Anaerobic Granular Sludge for Recovering Methane from Wastewater. Zhang YT; Wei W; Sun J; Xu Q; Ni BJ Environ Sci Technol; 2020 Aug; 54(15):9662-9671. PubMed ID: 32658461 [TBL] [Abstract][Full Text] [Related]
10. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion. Stolarek P; Ledakowicz S Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675 [TBL] [Abstract][Full Text] [Related]
11. Changes in physicochemical and leachate characteristics of microplastics during hydrothermal treatment of sewage sludge. Li X; Wang X; Chen L; Huang X; Pan F; Liu L; Dong B; Liu H; Li H; Dai X; Hur J Water Res; 2022 Aug; 222():118876. PubMed ID: 35914504 [TBL] [Abstract][Full Text] [Related]
12. The fate of microplastic in sludge management systems. Cydzik-Kwiatkowska A; Milojevic N; Jachimowicz P Sci Total Environ; 2022 Nov; 848():157466. PubMed ID: 35868371 [TBL] [Abstract][Full Text] [Related]
13. [Change in Granulation Potential and Microbial Enrichment Characteristics of Sludge Induced by Microplastics]. Xie QF; Yu N; Zhang N; Xie ZY; Shan KX; Wu YX; Tang L; Xia JF; Yang GJ Huan Jing Ke Xue; 2023 Jul; 44(7):3997-4005. PubMed ID: 37438298 [TBL] [Abstract][Full Text] [Related]
14. Microplastic Degradation in Sewage Sludge by Hydrothermal Carbonization: Efficiency and Mechanisms. Xu Z; Bai X Chemosphere; 2022 Jun; 297():134203. PubMed ID: 35248590 [TBL] [Abstract][Full Text] [Related]
15. Rapid and efficient removal of organic matter from sewage sludge for extraction of microplastics. Maw MM; Boontanon N; Fujii S; Boontanon SK Sci Total Environ; 2022 Dec; 853():158642. PubMed ID: 36096229 [TBL] [Abstract][Full Text] [Related]
16. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge. Peng X; Ma X; Xu Z Bioresour Technol; 2015 Mar; 180():288-95. PubMed ID: 25618498 [TBL] [Abstract][Full Text] [Related]
17. TG- MS study on in-situ sulfur retention during the co-combustion of reclaimed asphalt binder and wood sawdust. Wang T; Rong H; Chen S; Zhou Y; Li J; Xiao Y; Xue Y J Hazard Mater; 2021 Feb; 403():123911. PubMed ID: 33264964 [TBL] [Abstract][Full Text] [Related]
18. Gaseous emissions from sewage sludge combustion in a moving bed combustor. Batistella L; Silva V; Suzin RC; Virmond E; Althoff CA; Moreira RF; José HJ Waste Manag; 2015 Dec; 46():430-9. PubMed ID: 26337961 [TBL] [Abstract][Full Text] [Related]
19. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals. Li W; Meng J; Zhang Y; Haider G; Ge T; Zhang H; Li Z; Yu Y; Shan S Environ Pollut; 2022 Jun; 302():119092. PubMed ID: 35245620 [TBL] [Abstract][Full Text] [Related]
20. Understanding and mitigating the distinctive stresses induced by diverse microplastics on anaerobic hydrogen-producing granular sludge. Zhang YT; Wei W; Wang C; Ni BJ J Hazard Mater; 2022 Oct; 440():129771. PubMed ID: 36027748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]