These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35749924)

  • 1. Real-time model predictive and rule-based control with green infrastructures to reduce combined sewer overflows.
    Jean MÈ; Morin C; Duchesne S; Pelletier G; Pleau M
    Water Res; 2022 Aug; 221():118753. PubMed ID: 35749924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs).
    Fu X; Goddard H; Wang X; Hopton ME
    J Environ Manage; 2019 Apr; 236():571-580. PubMed ID: 30771676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is flow control in a space-constrained drainage network effective? A performance assessment for combined sewer overflow reduction.
    Wang W; Leitão JP; Wani O
    Environ Res; 2021 Nov; 202():111688. PubMed ID: 34293307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting blue-green infrastructure elements to reduce combined sewer overflows.
    Cavadini GB; Rodriguez M; Cook LM
    J Environ Manage; 2024 Aug; 365():121465. PubMed ID: 38901320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regression modeling of combined sewer overflows to assess system performance.
    A Bizer M; Kirchhoff CJ
    Water Sci Technol; 2022 Dec; 86(11):2848-2860. PubMed ID: 36515193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness Analysis of Systematic Combined Sewer Overflow Control Schemes in the Sponge City Pilot Area of Beijing.
    Gong Y; Chen Y; Yu L; Li J; Pan X; Shen Z; Xu X; Qiu Q
    Int J Environ Res Public Health; 2019 Apr; 16(9):. PubMed ID: 31035357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the impact of climate change on Combined Sewer Overflows based on small time step future rainfall timeseries and long-term continuous sewer network modelling.
    Gogien F; Dechesne M; Martinerie R; Lipeme Kouyi G
    Water Res; 2023 Feb; 230():119504. PubMed ID: 36621275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.
    Autixier L; Mailhot A; Bolduc S; Madoux-Humery AS; Galarneau M; Prévost M; Dorner S
    Sci Total Environ; 2014 Nov; 499():238-47. PubMed ID: 25192930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global resilience analysis of combined sewer systems under continuous hydrologic simulation.
    Rodriguez M; Fu G; Butler D; Yuan Z; Cook L
    J Environ Manage; 2023 Oct; 344():118607. PubMed ID: 37453297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows.
    Joshi P; Leitão JP; Maurer M; Bach PM
    Water Res; 2021 Mar; 191():116780. PubMed ID: 33422977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effect of spatial variances in historical rainfall time series to CSO performance evaluation.
    De Toffol S; De Simon Burström Y; Rauch W
    Water Sci Technol; 2006; 54(6-7):25-31. PubMed ID: 17120630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evaluation of rainfall influence on combined sewer overflows characteristics: the Berlin case study.
    Sandoval S; Torres A; Pawlowsky-Reusing E; Riechel M; Caradot N
    Water Sci Technol; 2013; 68(12):2683-90. PubMed ID: 24355858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable urban drainage systems in established city developments: Modelling the potential for CSO reduction and river impact mitigation.
    Riechel M; Matzinger A; Pallasch M; Joswig K; Pawlowsky-Reusing E; Hinkelmann R; Rouault P
    J Environ Manage; 2020 Nov; 274():111207. PubMed ID: 32829113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal siting of rainwater harvesting systems for reducing combined sewer overflows at city scale.
    Ghodsi SH; Zhu Z; Matott LS; Rabideau AJ; Torres MN
    Water Res; 2023 Feb; 230():119533. PubMed ID: 36638734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme Precipitation and Emergency Room Visits for Gastrointestinal Illness in Areas with and without Combined Sewer Systems: An Analysis of Massachusetts Data, 2003-2007.
    Jagai JS; Li Q; Wang S; Messier KP; Wade TJ; Hilborn ED
    Environ Health Perspect; 2015 Sep; 123(9):873-9. PubMed ID: 25855939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of QMRA to compare health risks associated with alternative urban sewer overflow management strategies.
    Kozak S; Petterson S; McAlister T; Jennison I; Bagraith S; Roiko A
    J Environ Manage; 2020 May; 262():110309. PubMed ID: 32250792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of green infrastructure on resilience performance in combined sewer systems under climate change.
    Rodriguez M; Fu G; Butler D; Yuan Z; Cook L
    J Environ Manage; 2024 Feb; 353():120229. PubMed ID: 38310790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data.
    Mounce SR; Shepherd W; Sailor G; Shucksmith J; Saul AJ
    Water Sci Technol; 2014; 69(6):1326-33. PubMed ID: 24647201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Costs and benefits of combined sewer overflow management strategies at the European scale.
    Quaranta E; Fuchs S; Liefting HJ; Schellart A; Pistocchi A
    J Environ Manage; 2022 Sep; 318():115629. PubMed ID: 35949087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of urban catchment characteristics on combined sewer overflows.
    Farina A; Gargano R; Greco R
    Environ Res; 2024 Mar; 244():117945. PubMed ID: 38109954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.