BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35750276)

  • 41. ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1.
    Moiseeva T; Hood B; Schamus S; O'Connor MJ; Conrads TP; Bakkenist CJ
    Nat Commun; 2017 Nov; 8(1):1392. PubMed ID: 29123096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories.
    Ge XQ; Blow JJ
    J Cell Biol; 2010 Dec; 191(7):1285-97. PubMed ID: 21173116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-Level Control of the ATM/ATR-CHK1 Axis by the Transcription Factor E4F1 in Triple-Negative Breast Cancer.
    Batnini K; Houles T; Kirsh O; Du Manoir S; Zaroual M; Delpech H; Fallet C; Lacroix M; Le Cam L; Theillet C; Sardet C; Rodier G
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012478
    [No Abstract]   [Full Text] [Related]  

  • 44. UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress.
    Ward IM; Minn K; Chen J
    J Biol Chem; 2004 Mar; 279(11):9677-80. PubMed ID: 14742437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint.
    Lee AY; Chiba T; Truong LN; Cheng AN; Do J; Cho MJ; Chen L; Wu X
    J Biol Chem; 2012 Jan; 287(4):2531-43. PubMed ID: 22123827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The human oncoprotein MDM2 induces replication stress eliciting early intra-S-phase checkpoint response and inhibition of DNA replication origin firing.
    Frum RA; Singh S; Vaughan C; Mukhopadhyay ND; Grossman SR; Windle B; Deb S; Deb SP
    Nucleic Acids Res; 2014 Jan; 42(2):926-40. PubMed ID: 24163099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A balanced pyrimidine pool is required for optimal Chk1 activation to prevent ultrafine anaphase bridge formation.
    Gemble S; Buhagiar-Labarchède G; Onclercq-Delic R; Biard D; Lambert S; Amor-Guéret M
    J Cell Sci; 2016 Aug; 129(16):3167-77. PubMed ID: 27383768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stalled replication induces p53 accumulation through distinct mechanisms from DNA damage checkpoint pathways.
    Ho CC; Siu WY; Lau A; Chan WM; Arooz T; Poon RY
    Cancer Res; 2006 Feb; 66(4):2233-41. PubMed ID: 16489026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ZEB1 inhibition sensitizes cells to the ATR inhibitor VE-821 by abrogating epithelial-mesenchymal transition and enhancing DNA damage.
    Song N; Jing W; Li C; Bai M; Cheng Y; Li H; Hou K; Li Y; Wang K; Li Z; Liu Y; Qu X; Che X
    Cell Cycle; 2018; 17(5):595-604. PubMed ID: 29157079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes.
    Patro BS; Frøhlich R; Bohr VA; Stevnsner T
    J Cell Sci; 2011 Dec; 124(Pt 23):3967-79. PubMed ID: 22159421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase.
    Petermann E; Caldecott KW
    Cell Cycle; 2006 Oct; 5(19):2203-9. PubMed ID: 16969104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability.
    Dungrawala H; Rose KL; Bhat KP; Mohni KN; Glick GG; Couch FB; Cortez D
    Mol Cell; 2015 Sep; 59(6):998-1010. PubMed ID: 26365379
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer.
    Gralewska P; Gajek A; Marczak A; Rogalska A
    J Hematol Oncol; 2020 Apr; 13(1):39. PubMed ID: 32316968
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Marek's Disease Virus Disables the ATR-Chk1 Pathway by Activating STAT3.
    Lian X; Bao C; Li X; Zhang X; Chen H; Jung YS; Qian Y
    J Virol; 2019 May; 93(9):. PubMed ID: 30787154
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA damage checkpoint kinases in cancer.
    Smith HL; Southgate H; Tweddle DA; Curtin NJ
    Expert Rev Mol Med; 2020 Jun; 22():e2. PubMed ID: 32508294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Tale of Two Checkpoints: ATR Inhibition and PD-(L)1 Blockade.
    Ngoi NYL; Peng G; Yap TA
    Annu Rev Med; 2022 Jan; 73():231-250. PubMed ID: 34644155
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Critical role of SMG7 in activation of the ATR-CHK1 axis in response to genotoxic stress.
    Ho K; Luo H; Zhu W; Tang Y
    Sci Rep; 2021 Apr; 11(1):7502. PubMed ID: 33820915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting DNA Damage Response in Prostate Cancer by Inhibiting Androgen Receptor-CDC6-ATR-Chk1 Signaling.
    Karanika S; Karantanos T; Li L; Wang J; Park S; Yang G; Zuo X; Song JH; Maity SN; Manyam GC; Broom B; Aparicio AM; Gallick GE; Troncoso P; Corn PG; Navone N; Zhang W; Li S; Thompson TC
    Cell Rep; 2017 Feb; 18(8):1970-1981. PubMed ID: 28228262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.
    Toledo LI; Altmeyer M; Rask MB; Lukas C; Larsen DH; Povlsen LK; Bekker-Jensen S; Mailand N; Bartek J; Lukas J
    Cell; 2013 Nov; 155(5):1088-103. PubMed ID: 24267891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinct but Concerted Roles of ATR, DNA-PK, and Chk1 in Countering Replication Stress during S Phase.
    Buisson R; Boisvert JL; Benes CH; Zou L
    Mol Cell; 2015 Sep; 59(6):1011-24. PubMed ID: 26365377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.