These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35750653)

  • 61. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries.
    Qiu W; Jiao J; Xia J; Zhong H; Chen L
    Chemistry; 2015 Mar; 21(11):4359-67. PubMed ID: 25643650
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrathin 2D Mesoporous TiO
    Liang Y; Xiong X; Xu Z; Xia Q; Wan L; Liu R; Chen G; Chou SL
    Small; 2020 Jul; 16(26):e2000030. PubMed ID: 32510816
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metal-Organic Framework Template Synthesis of NiCo
    Yuan D; Huang G; Yin D; Wang X; Wang C; Wang L
    ACS Appl Mater Interfaces; 2017 May; 9(21):18178-18186. PubMed ID: 28488853
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Embedding Atomically Dispersed Iron Sites in Nitrogen-Doped Carbon Frameworks-Wrapped Silicon Suboxide for Superior Lithium Storage.
    Guo X; Xu H; Li W; Liu Y; Shi Y; Li Q; Pang H
    Adv Sci (Weinh); 2023 Feb; 10(4):e2206084. PubMed ID: 36470654
    [TBL] [Abstract][Full Text] [Related]  

  • 65. ZIF-67-Derived CoSe/NC Composites as Anode Materials for Lithium-Ion Batteries.
    Li Z; Zhang LY; Zhang L; Huang J; Liu H
    Nanoscale Res Lett; 2019 Dec; 14(1):358. PubMed ID: 31792656
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heterostructured SnO
    Li H; Zhang B; Wang X; Zhang J; An T; Ding Z; Yu W; Tong H
    Front Chem; 2019; 7():339. PubMed ID: 31139622
    [TBL] [Abstract][Full Text] [Related]  

  • 67. NiMoS
    Wang G; Xu Y; Yue H; Jin R; Gao S
    J Colloid Interface Sci; 2020 Mar; 561():854-860. PubMed ID: 31771868
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes.
    Li Y; Liu W; Long Z; Xu P; Sun Y; Zhang X; Ma S; Jiang N
    Chemistry; 2018 Sep; 24(49):12912-12919. PubMed ID: 29802660
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Co-Inlaid Carbon-Encapsulated SiO
    Zhou X; Qi Z; Wang A; Liu D; Dong K; Lei Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15122-15132. PubMed ID: 35333044
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries.
    Xu Y; Zhang C; Zhou M; Fu Q; Zhao C; Wu M; Lei Y
    Nat Commun; 2018 Apr; 9(1):1720. PubMed ID: 29712922
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tin Nanoparticles Encapsulated Carbon Nanoboxes as High-Performance Anode for Lithium-Ion Batteries.
    Yang Z; Wu HH; Zheng Z; Cheng Y; Li P; Zhang Q; Wang MS
    Front Chem; 2018; 6():533. PubMed ID: 30430108
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nitrogen-Doped Carbon Encapsulated Partial Zinc Stannate Nanocomposite for High-Performance Energy Storage Materials.
    Yu J; Liu Z; Zhang X; Ding Y; Fu Z; Wang F
    Front Chem; 2021; 9():769186. PubMed ID: 34869214
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Constructing a Stable Si-N-Enriched Interface Boosts Lithium Storage Kinetics in a Silicon-Based Anode.
    Yang Z; Jiang M; Wang X; Wang Y; Cao M
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52636-52646. PubMed ID: 34704737
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synergistic Performance Boosts of Dopamine-Derived Carbon Shell Over Bi-metallic Sulfide: A Promising Advancement for High-Performance Lithium-Ion Battery Anodes.
    Bhattarai RM; Le N; Chhetri K; Acharya D; Pandiyarajan SMS; Saud S; Kim SJ; Mok YS
    Adv Sci (Weinh); 2024 Apr; 11(15):e2308160. PubMed ID: 38342631
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Binary-Metal Mn
    Wan S; Liu Q; Cheng M; Chen Y; Chen H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38278-38288. PubMed ID: 34342441
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries.
    Xi F; Zhang Z; Hu Y; Li S; Ma W; Chen X; Wan X; Chong C; Luo B; Wang L
    J Hazard Mater; 2021 Jul; 414():125480. PubMed ID: 33647610
    [TBL] [Abstract][Full Text] [Related]  

  • 77. NASICON type KTi
    Zheng M; Wang Z; Ru Q; Fu H; Zhang J; Pan Z; Wang J; Xie Q; Zhao X
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1906-1917. PubMed ID: 34689047
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enabling SiO
    Yan MY; Li G; Zhang J; Tian YF; Yin YX; Zhang CJ; Jiang KC; Xu Q; Li HL; Guo YG
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27202-27209. PubMed ID: 32436378
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Silicon core-mesoporous shell carbon spheres as high stability lithium-ion battery anode.
    Prakash S; Zhang C; Park JD; Razmjooei F; Yu JS
    J Colloid Interface Sci; 2019 Jan; 534():47-54. PubMed ID: 30205254
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Manipulating Oxidation of Silicon with Fresh Surface Enabling Stable Battery Anode.
    Ge G; Li G; Wang X; Chen X; Fu L; Liu X; Mao E; Liu J; Yang X; Qian C; Sun Y
    Nano Lett; 2021 Apr; 21(7):3127-3133. PubMed ID: 33734706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.