These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35750796)

  • 1. Inferring the spread of COVID-19: the role of time-varying reporting rate in epidemiological modelling.
    Spannaus A; Papamarkou T; Erwin S; Christian JB
    Sci Rep; 2022 Jun; 12(1):10761. PubMed ID: 35750796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of five epidemiological models for transmission of SARS-CoV-2 in India.
    Purkayastha S; Bhattacharyya R; Bhaduri R; Kundu R; Gu X; Salvatore M; Ray D; Mishra S; Mukherjee B
    BMC Infect Dis; 2021 Jun; 21(1):533. PubMed ID: 34098885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Framework for Inferring Epidemiological Model Parameters using Bayesian Nonparametrics.
    Bent OE; Wachira C; Remy SL; Ogallo W; Walcott-Bryant A
    AMIA Annu Symp Proc; 2021; 2021():217-226. PubMed ID: 35308928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian inference of COVID-19 spreading rates in South Africa.
    Mbuvha R; Marwala T
    PLoS One; 2020; 15(8):e0237126. PubMed ID: 32756608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty and error in SARS-CoV-2 epidemiological parameters inferred from population-level epidemic models.
    Whittaker DG; Herrera-Reyes AD; Hendrix M; Owen MR; Band LR; Mirams GR; Bolton KJ; Preston SP
    J Theor Biol; 2023 Feb; 558():111337. PubMed ID: 36351493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany.
    Radev ST; Graw F; Chen S; Mutters NT; Eichel VM; Bärnighausen T; Köthe U
    PLoS Comput Biol; 2021 Oct; 17(10):e1009472. PubMed ID: 34695111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COVID-19 outbreak in Wuhan demonstrates the limitations of publicly available case numbers for epidemiological modeling.
    Raimúndez E; Dudkin E; Vanhoefer J; Alamoudi E; Merkt S; Fuhrmann L; Bai F; Hasenauer J
    Epidemics; 2021 Mar; 34():100439. PubMed ID: 33556763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic calibration with approximate Bayesian computation for a microsimulation of disease spread.
    Asher M; Lomax N; Morrissey K; Spooner F; Malleson N
    Sci Rep; 2023 May; 13(1):8637. PubMed ID: 37244962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of age-stratified contact rates during the COVID-19 pandemic using a novel inference algorithm.
    Pooley CM; Doeschl-Wilson AB; Marion G
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210298. PubMed ID: 35965466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-driven epidemic model with human mobility and vaccination protection for COVID-19 prediction.
    Li R; Song Y; Qu H; Li M; Jiang GP
    J Biomed Inform; 2024 Jan; 149():104571. PubMed ID: 38092247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts.
    Contento L; Castelletti N; Raimúndez E; Le Gleut R; Schälte Y; Stapor P; Hinske LC; Hoelscher M; Wieser A; Radon K; Fuchs C; Hasenauer J;
    Epidemics; 2023 Jun; 43():100681. PubMed ID: 36931114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Noise Modelling for State Estimation of the Spread of COVID-19 in Saudi Arabia with Extended Kalman Filters.
    Alyami L; Panda DK; Das S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of travelling on the COVID-19 infection cases in Germany.
    Schäfer M; Wijaya KP; Rockenfeller R; Götz T
    BMC Infect Dis; 2022 May; 22(1):455. PubMed ID: 35549671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European countries.
    Karnakov P; Arampatzis G; Kičić I; Wermelinger F; Wälchli D; Papadimitriou C; Koumoutsakos P
    Swiss Med Wkly; 2020 Jul; 150():w20313. PubMed ID: 32677705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic.
    Chandra R; He Y
    PLoS One; 2021; 16(7):e0253217. PubMed ID: 34197473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COVID-19 Pandemic Data Modeling in Pakistan Using Time-Series SIR.
    Taimoor M; Ali S; Shah I; Muwanika FR
    Comput Math Methods Med; 2022; 2022():6001876. PubMed ID: 35799651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the COVID-19 epidemic in Ireland under mitigation.
    Cazelles B; Nguyen-Van-Yen B; Champagne C; Comiskey C
    BMC Infect Dis; 2021 Aug; 21(1):735. PubMed ID: 34344318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multivariate statistical approach to predict COVID-19 count data with epidemiological interpretation and uncertainty quantification.
    Bartolucci F; Pennoni F; Mira A
    Stat Med; 2021 Oct; 40(24):5351-5372. PubMed ID: 34374438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficient Approach to Nowcasting the Time-varying Reproduction Number.
    Sumalinab B; Gressani O; Hens N; Faes C
    Epidemiology; 2024 Jul; 35(4):512-516. PubMed ID: 38788149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.