These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35751440)

  • 1. Development and validation of a deep learning model to predict the survival of patients in ICU.
    Tang H; Jin Z; Deng J; She Y; Zhong Y; Sun W; Ren Y; Cao N; Chen C
    J Am Med Inform Assoc; 2022 Aug; 29(9):1567-1576. PubMed ID: 35751440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study.
    Kim YK; Seo WD; Lee SJ; Koo JH; Kim GC; Song HS; Lee M
    J Med Internet Res; 2024 Sep; 26():e62890. PubMed ID: 39288404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study.
    Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y
    Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records.
    Nielsen AB; Thorsen-Meyer HC; Belling K; Nielsen AP; Thomas CE; Chmura PJ; Lademann M; Moseley PL; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Perner A; Brunak S
    Lancet Digit Health; 2019 Jun; 1(2):e78-e89. PubMed ID: 33323232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rating the quality of intensive care units: is it a function of the intensive care unit scoring system?
    Glance LG; Osler TM; Dick A
    Crit Care Med; 2002 Sep; 30(9):1976-82. PubMed ID: 12352029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based prediction of in-hospital mortality for post cardiovascular surgery patients admitting to intensive care unit: a retrospective observational cohort study based on a large multi-center critical care database.
    Bi S; Chen S; Li J; Gu J
    Comput Methods Programs Biomed; 2022 Nov; 226():107115. PubMed ID: 36126435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of three prognostic models in patients with cancer in need of intensive care in a medical center in China.
    Xing X; Gao Y; Wang H; Huang C; Qu S; Zhang H; Wang H; Sun K
    PLoS One; 2015; 10(6):e0131329. PubMed ID: 26110534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit.
    Zhuang J; Huang H; Jiang S; Liang J; Liu Y; Yu X
    BMC Med Inform Decis Mak; 2023 Sep; 23(1):185. PubMed ID: 37715194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study.
    Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W
    Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acute physiology and chronic health evaluation III outcome prediction in patients admitted to the intensive care unit after pneumonectomy.
    Keegan MT; Harrison BA; Brown DR; Whalen FX; Cassivi SD; Afessa B
    J Cardiothorac Vasc Anesth; 2007 Dec; 21(6):832-7. PubMed ID: 18068061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable machine learning models for predicting in-hospital death in patients in the intensive care unit with cerebral infarction.
    Ouyang Y; Cheng M; He B; Zhang F; Ouyang W; Zhao J; Qu Y
    Comput Methods Programs Biomed; 2023 Apr; 231():107431. PubMed ID: 36827826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying early-measured variables associated with APACHE IVa providing incorrect in-hospital mortality predictions for critical care patients.
    Feng S; Dubin JA
    Sci Rep; 2021 Nov; 11(1):22203. PubMed ID: 34772961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mortality probability model III and simplified acute physiology score II: assessing their value in predicting length of stay and comparison to APACHE IV.
    Vasilevskis EE; Kuzniewicz MW; Cason BA; Lane RK; Dean ML; Clay T; Rennie DJ; Vittinghoff E; Dudley RA
    Chest; 2009 Jul; 136(1):89-101. PubMed ID: 19363210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
    Awad A; Bader-El-Den M; McNicholas J; Briggs J
    Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit.
    Wang B; Li Y; Tian Y; Ju C; Xu X; Pei S
    Respir Med; 2023 Oct; 217():107363. PubMed ID: 37451647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the performance of five intensive care scoring models within a large Scottish database.
    Livingston BM; MacKirdy FN; Howie JC; Jones R; Norrie JD
    Crit Care Med; 2000 Jun; 28(6):1820-7. PubMed ID: 10890627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a risk stratification model for predicting the mortality of acute kidney injury in critical care patients.
    Huang H; Liu Y; Wu M; Gao Y; Yu X
    Ann Transl Med; 2021 Feb; 9(4):323. PubMed ID: 33708950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Machine Learning Models to Validate a Medication Regimen Complexity Scoring Tool for Critically Ill Patients.
    Al-Mamun MA; Brothers T; Newsome AS
    Ann Pharmacother; 2021 Apr; 55(4):421-429. PubMed ID: 32929977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.