These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 35751522)
1. Modeling net ecosystem carbon balance and loss in coastal wetlands exposed to sea-level rise and saltwater intrusion. Ishtiaq KS; Troxler TG; Lamb-Wotton L; Wilson BJ; Charles SP; Davis SE; Kominoski JS; Rudnick DT; Sklar FH Ecol Appl; 2022 Dec; 32(8):e2702. PubMed ID: 35751522 [TBL] [Abstract][Full Text] [Related]
2. Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades. Wilson BJ; Servais S; Mazzei V; Kominoski JS; Hu M; Davis SE; Gaiser E; Sklar F; Bauman L; Kelly S; Madden C; Richards J; Rudnick D; Stachelek J; Troxler TG Ecol Appl; 2018 Dec; 28(8):2092-2108. PubMed ID: 30376192 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus alleviation of salinity stress: effects of saltwater intrusion on an Everglades freshwater peat marsh. Wilson BJ; Servais S; Charles SP; Mazzei V; Gaiser EE; Kominoski JS; Richards JH; Troxler TG Ecology; 2019 May; 100(5):e02672. PubMed ID: 30942486 [TBL] [Abstract][Full Text] [Related]
4. Sea-level rise will reduce net CO Li YL; Guo HQ; Ge ZM; Wang DQ; Liu WL; Xie LN; Li SH; Tan LS; Zhao B; Li XZ; Tang JW Sci Total Environ; 2020 Dec; 747():141214. PubMed ID: 32795794 [TBL] [Abstract][Full Text] [Related]
5. Toward a mechanistic understanding of "peat collapse" and its potential contribution to coastal wetland loss. Chambers LG; Steinmuller HE; Breithaupt JL Ecology; 2019 Jul; 100(7):e02720. PubMed ID: 30933312 [TBL] [Abstract][Full Text] [Related]
6. Declines in plant productivity drive loss of soil elevation in a tidal freshwater marsh exposed to saltwater intrusion. Solohin E; Widney SE; Craft CB Ecology; 2020 Dec; 101(12):e03148. PubMed ID: 33459360 [TBL] [Abstract][Full Text] [Related]
7. Year-around survey and manipulation experiments reveal differential sensitivities of soil prokaryotic and fungal communities to saltwater intrusion in Florida Everglades wetlands. Zhao J; Chakrabarti S; Chambers R; Weisenhorn P; Travieso R; Stumpf S; Standen E; Briceno H; Troxler T; Gaiser E; Kominoski J; Dhillon B; Martens-Habbena W Sci Total Environ; 2023 Feb; 858(Pt 1):159865. PubMed ID: 36461566 [TBL] [Abstract][Full Text] [Related]
8. A common-mesocosm experiment recreates sawgrass (Cladium jamaicense) phenotypes from Everglades marl prairies and peat marshes. Richards JH; Olivas PC Am J Bot; 2020 Jan; 107(1):56-65. PubMed ID: 31889308 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of uncertainty to improve projections of tidal wetland elevation and carbon accumulation with sea-level rise. Buffington KJ; Janousek CN; Dugger BD; Callaway JC; Schile-Beers LM; Borgnis Sloane E; Thorne KM PLoS One; 2021; 16(10):e0256707. PubMed ID: 34669722 [TBL] [Abstract][Full Text] [Related]
11. Modeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands. Wang H; Dai Z; Trettin CC; Krauss KW; Noe GB; Burton AJ; Stagg CL; Ward EJ Ecol Appl; 2022 Dec; 32(8):e2700. PubMed ID: 35751513 [TBL] [Abstract][Full Text] [Related]
12. Modeling impacts of saltwater intrusion on methane and nitrous oxide emissions in tidal forested wetlands. Wang H; Dai Z; Krauss KW; Trettin CC; Noe GB; Burton AJ; Ward EJ Ecol Appl; 2023 Jul; 33(5):e2858. PubMed ID: 37084186 [TBL] [Abstract][Full Text] [Related]
13. Climate and plant controls on soil organic matter in coastal wetlands. Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880 [TBL] [Abstract][Full Text] [Related]
14. Climate change projected effects on coastal foundation communities of the Greater Everglades using a 2060 scenario: need for a new management paradigm. Koch MS; Coronado C; Miller MW; Rudnick DT; Stabenau E; Halley RB; Sklar FH Environ Manage; 2015 Apr; 55(4):857-75. PubMed ID: 25312295 [TBL] [Abstract][Full Text] [Related]
15. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156 [TBL] [Abstract][Full Text] [Related]
16. Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands. Dang C; Morrissey EM; Neubauer SC; Franklin RB Glob Chang Biol; 2019 Feb; 25(2):549-561. PubMed ID: 30537235 [TBL] [Abstract][Full Text] [Related]
17. Effects of simulated drought on the carbon balance of Everglades short-hydroperiod marsh. Malone SL; Starr G; Staudhammer CL; Ryan MG Glob Chang Biol; 2013 Aug; 19(8):2511-23. PubMed ID: 23554284 [TBL] [Abstract][Full Text] [Related]
18. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events. Ury EA; Yang X; Wright JP; Bernhardt ES Ecol Appl; 2021 Jul; 31(5):e02339. PubMed ID: 33817890 [TBL] [Abstract][Full Text] [Related]
19. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades. Flower H; Rains M; Fitz C Environ Manage; 2017 Nov; 60(5):989-1009. PubMed ID: 28779184 [TBL] [Abstract][Full Text] [Related]
20. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic. Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]