BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 35751828)

  • 1. Machine learning algorithm to evaluate risk factors of diabetic foot ulcers and its severity.
    Nanda R; Nath A; Patel S; Mohapatra E
    Med Biol Eng Comput; 2022 Aug; 60(8):2349-2357. PubMed ID: 35751828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait.
    Haque F; Reaz MBI; Chowdhury MEH; Ezeddin M; Kiranyaz S; Alhatou M; Ali SHM; Bakar AAA; Srivastava G
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches.
    Ganie SM; Malik MB; Arif T
    J Diabetes Metab Disord; 2022 Jun; 21(1):339-352. PubMed ID: 35673418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques.
    Goyal M; Reeves ND; Rajbhandari S; Ahmad N; Wang C; Yap MH
    Comput Biol Med; 2020 Feb; 117():103616. PubMed ID: 32072964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021.
    Ebrahim OA; Derbew G
    Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning for the prediction of minor amputation in University of Texas grade 3 diabetic foot ulcers.
    Wang S; Wang J; Zhu MX; Tan Q
    PLoS One; 2022; 17(12):e0278445. PubMed ID: 36472981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Decision Support System for Diabetic Patients by Predicting Type 2 Diabetes Using Machine Learning Algorithms.
    Islam R; Sultana A; Tuhin MN; Saikat MSH; Islam MR
    J Healthc Eng; 2023; 2023():6992441. PubMed ID: 37287539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking classifier to improve the classification of shoulder motion in transhumeral amputees.
    Kaur A
    Biomed Tech (Berl); 2022 Apr; 67(2):105-117. PubMed ID: 35363448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning approach to predicting vascular calcification risk of type 2 diabetes: A retrospective study.
    Liang X; Li X; Li G; Wang B; Liu Y; Sun D; Liu L; Zhang R; Ji S; Yan W; Yu R; Gao Z; Liu X
    Clin Cardiol; 2024 Apr; 47(4):e24264. PubMed ID: 38563389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning model for early detection of diabetic foot using thermogram images.
    Khandakar A; Chowdhury MEH; Ibne Reaz MB; Md Ali SH; Hasan MA; Kiranyaz S; Rahman T; Alfkey R; Bakar AAA; Malik RA
    Comput Biol Med; 2021 Oct; 137():104838. PubMed ID: 34534794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.
    Zou Y; Zhao L; Zhang J; Wang Y; Wu Y; Ren H; Wang T; Zhang R; Wang J; Zhao Y; Qin C; Xu H; Li L; Chai Z; Cooper ME; Tong N; Liu F
    Ren Fail; 2022 Dec; 44(1):562-570. PubMed ID: 35373711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble.
    Xiong Y; Ye M; Wu C
    Comput Math Methods Med; 2021; 2021():5556992. PubMed ID: 33986823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM.
    Gollapalli M; Alansari A; Alkhorasani H; Alsubaii M; Sakloua R; Alzahrani R; Al-Hariri M; Alfares M; AlKhafaji D; Al Argan R; Albaker W
    Comput Biol Med; 2022 Aug; 147():105757. PubMed ID: 35777087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer.
    Ozcan I; Aydin H; Cetinkaya A
    Asian Pac J Cancer Prev; 2022 Oct; 23(10):3287-3297. PubMed ID: 36308351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study on ML-Based Software Defect Detection for Security Traceability in Smart Healthcare Applications.
    Mcmurray S; Sodhro AH
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods.
    Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM
    BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system.
    Shakhovska N; Yakovyna V; Chopyak V
    Math Biosci Eng; 2022 Apr; 19(6):6102-6123. PubMed ID: 35603393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hybrid Ensemble Algorithm Combining AdaBoost and Genetic Algorithm for Cancer Classification with Gene Expression Data.
    Lu H; Gao H; Ye M; Wang X
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):863-870. PubMed ID: 31722484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.