These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35751984)

  • 21. Tin and Oxygen-Vacancy Co-doping into Hematite Photoanode for Improved Photoelectrochemical Performances.
    Xiao C; Zhou Z; Li L; Wu S; Li X
    Nanoscale Res Lett; 2020 Mar; 15(1):54. PubMed ID: 32130553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
    Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS
    Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the enhanced photoelectrochemical performance of hydrothermally controlled hematite nanostructures for proficient solar water oxidation.
    Park JW; Subramanian A; Mahadik MA; Lee SY; Choi SH; Jang JS
    Dalton Trans; 2018 Mar; 47(12):4076-4086. PubMed ID: 29436539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.
    Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS
    Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NiFe-LDH-Decorated Ti-Doped Hematite Photoanode for Enhancing Solar Water-Splitting Efficiency.
    Bai S; Jia S; Zhao Y; Tang P; Feng Y; Luo R; Li D; Chen A
    Inorg Chem; 2023 Sep; 62(37):15039-15049. PubMed ID: 37652045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational Design of CoOOH/α-Fe
    Zheng Y; Wang P; Zhu S; Wu M; Zhang L; Feng C; Li D; Chang Z; Chong R
    Inorg Chem; 2024 Feb; 63(5):2745-2755. PubMed ID: 38241145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface Reconstruction of Cobalt Species on Amorphous Cobalt Silicate-Coated Fluorine-Doped Hematite for Efficient Photoelectrochemical Water Oxidation.
    Chai H; Wang P; Wang T; Gao L; Li F; Jin J
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47572-47580. PubMed ID: 34607433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NiFeO
    Yoon KY; Park J; Jung M; Ji SG; Lee H; Seo JH; Kwak MJ; Il Seok S; Lee JH; Jang JH
    Nat Commun; 2021 Jul; 12(1):4309. PubMed ID: 34262036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy and environmental applications of Sn
    Nagappagari LR; Lee J; Lee H; Jeong B; Lee K
    Environ Pollut; 2021 Feb; 271():116318. PubMed ID: 33360662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FeO-Based Hierarchical Structures on FTO Substrates and Their Photocurrent.
    Xia W; Sun J; Zeng X; Wang P; Luo M; Dong J; Yu H
    ACS Omega; 2020 Feb; 5(5):2205-2213. PubMed ID: 32064381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts.
    Wang T; Long X; Wei S; Wang P; Wang C; Jin J; Hu G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49705-49712. PubMed ID: 33104336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding charge transport in non-doped pristine and surface passivated hematite (Fe
    Bassi PS; Xianglin L; Fang Y; Loo JS; Barber J; Wong LH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30370-30378. PubMed ID: 27782252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing.
    Wang L; Lee CY; Mazare A; Lee K; Müller J; Spiecker E; Schmuki P
    Chemistry; 2014 Jan; 20(1):77-82. PubMed ID: 24338769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.