These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 35752149)
1. Kinetic performance comparison of superficially porous, fully porous and monolithic reversed-phase columns by gradient kinetic plots for the separation of protein biopharmaceuticals. Jaag S; Wen C; Peters B; Lämmerhofer M J Chromatogr A; 2022 Aug; 1676():463251. PubMed ID: 35752149 [TBL] [Abstract][Full Text] [Related]
2. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance. Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies. Fekete S; Veuthey JL; Eeltink S; Guillarme D Anal Bioanal Chem; 2013 Apr; 405(10):3137-51. PubMed ID: 23358675 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of superficially porous particle based zwitterionic chiral ion exchangers against fully porous particle benchmarks for enantioselective ultra-high performance liquid chromatography. Geibel C; Dittrich K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M J Chromatogr A; 2019 Oct; 1603():130-140. PubMed ID: 31235330 [TBL] [Abstract][Full Text] [Related]
5. A study of the effects of column porosity on gradient separations of proteins. Urban J; Jandera P; Kucerová Z; van Straten MA; Claessens HA J Chromatogr A; 2007 Oct; 1167(1):63-75. PubMed ID: 17804002 [TBL] [Abstract][Full Text] [Related]
6. Kinetic performance of reversed-phase C18 high-performance liquid chromatography columns compared by means of the Kinetic Plot Method in pharmaceutically relevant applications. Fanigliulo A; Cabooter D; Bellazzi G; Allieri B; Rottigni A; Desmet G J Chromatogr A; 2011 May; 1218(21):3351-9. PubMed ID: 20863506 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles. Vaast A; Broeckhoven K; Dolman S; Desmet G; Eeltink S J Chromatogr A; 2012 Mar; 1228():270-5. PubMed ID: 21855077 [TBL] [Abstract][Full Text] [Related]
8. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406 [TBL] [Abstract][Full Text] [Related]
9. Kinetic optimisation of the reversed phase liquid chromatographic separation of proanthocyanidins on sub-2 μm and superficially porous phases. Kalili KM; Cabooter D; Desmet G; de Villiers A J Chromatogr A; 2012 May; 1236():63-76. PubMed ID: 22444426 [TBL] [Abstract][Full Text] [Related]
10. Charge variant analysis of protein-based biopharmaceuticals using two-dimensional liquid chromatography hyphenated to mass spectrometry. Jaag S; Shirokikh M; Lämmerhofer M J Chromatogr A; 2021 Jan; 1636():461786. PubMed ID: 33326927 [TBL] [Abstract][Full Text] [Related]
11. Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. Bobály B; Lauber M; Beck A; Guillarme D; Fekete S J Chromatogr A; 2018 May; 1549():63-76. PubMed ID: 29602545 [TBL] [Abstract][Full Text] [Related]
12. Kinetic performance comparison of fully and superficially porous particles with a particle size of 5 µm: intrinsic evaluation and application to the impurity analysis of griseofulvin. Kahsay G; Broeckhoven K; Adams E; Desmet G; Cabooter D Talanta; 2014 May; 122():122-9. PubMed ID: 24720972 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of trilobal capillary-channeled polymer fiber columns with superficially porous and monolithic phases toward reversed-phase protein separations. Billotto LS; Marcus RK J Sep Sci; 2022 Oct; 45(20):3811-3826. PubMed ID: 35986632 [TBL] [Abstract][Full Text] [Related]
14. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P; Kučerová Z; Urban J J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a new wide pore core-shell material (Aeris WIDEPORE) and comparison with other existing stationary phases for the analysis of intact proteins. Fekete S; Berky R; Fekete J; Veuthey JL; Guillarme D J Chromatogr A; 2012 May; 1236():177-88. PubMed ID: 22443893 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the kinetic performance of different columns for fast liquid chromatography, emphasizing the contributions of column end structure. Lambert N; Miyazaki S; Ohira M; Tanaka N; Felinger A J Chromatogr A; 2016 Nov; 1473():99-108. PubMed ID: 27814915 [TBL] [Abstract][Full Text] [Related]
17. Monolithic alkylsilane column: A promising separation medium for oligonucleotides by ion-pair reversed-phase liquid chromatography. Qiao JQ; Liang C; Zhu ZY; Cao ZM; Zheng WJ; Lian HZ J Chromatogr A; 2018 Sep; 1569():168-177. PubMed ID: 30077461 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the fast gradient performance of new prototype silica monolithic columns and columns packed with fully porous and core-shell particles. Gritti F; Tanaka N; Guiochon G J Chromatogr A; 2012 May; 1236():28-41. PubMed ID: 22444427 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of recent very efficient wide-pore stationary phases for the reversed-phase separation of proteins. Fekete S; Berky R; Fekete J; Veuthey JL; Guillarme D J Chromatogr A; 2012 Aug; 1252():90-103. PubMed ID: 22784695 [TBL] [Abstract][Full Text] [Related]
20. Performance of nanoflow liquid chromatography using core-shell particles: A comparison study. Liu Y; Sun K; Shao C; Shi X; Zeng J; Guo R; Zhang B J Chromatogr A; 2021 Jul; 1648():462218. PubMed ID: 33992996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]