These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35752289)

  • 21. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity.
    Höijer I; Johansson J; Gudmundsson S; Chin CS; Bunikis I; Häggqvist S; Emmanouilidou A; Wilbe M; den Hoed M; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Genome Biol; 2020 Dec; 21(1):290. PubMed ID: 33261648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion.
    Liu C; Yue Y; Xue Y; Zhou C; Ma Y
    Microb Cell Fact; 2023 Oct; 22(1):211. PubMed ID: 37838676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.
    Zaboikin M; Zaboikina T; Freter C; Srinivasakumar N
    PLoS One; 2017; 12(1):e0169931. PubMed ID: 28095454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors.
    Li G; Zhang X; Wang H; Liu D; Li Z; Wu Z; Yang H
    Int J Biochem Cell Biol; 2020 Aug; 125():105790. PubMed ID: 32534122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating DNA Repair Pathways to Improve Precision Genome Engineering.
    Pawelczak KS; Gavande NS; VanderVere-Carozza PS; Turchi JJ
    ACS Chem Biol; 2018 Feb; 13(2):389-396. PubMed ID: 29210569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 32. A simple and effective genotyping workflow for rapid detection of CRISPR genome editing.
    Wang L; Wang J; Feng D; Wang B; Jahan-Mihan Y; Wang Y; Bi Y; Lim D; Ji B
    Am J Physiol Gastrointest Liver Physiol; 2024 Apr; 326(4):G473-G481. PubMed ID: 38410866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precision Genome Editing with CRISPR-Cas9.
    Rahman S; Ikram AR; Azeem F; Tahir Ul Qamar M; Shaheen T; Mehboob-Ur-Rahman
    Methods Mol Biol; 2024; 2788():355-372. PubMed ID: 38656525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A homology independent sequence replacement strategy in human cells using a CRISPR nuclease.
    Danner E; Lebedin M; de la Rosa K; Kühn R
    Open Biol; 2021 Jan; 11(1):200283. PubMed ID: 33499763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells.
    Carusillo A; Haider S; Schäfer R; Rhiel M; Türk D; Chmielewski KO; Klermund J; Mosti L; Andrieux G; Schäfer R; Cornu TI; Cathomen T; Mussolino C
    Nucleic Acids Res; 2023 May; 51(9):4660-4673. PubMed ID: 37070192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
    Bloomer H; Smith RH; Hakami W; Larochelle A
    Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Sequencing Reveals the Comprehensive CRISPR-Cas9 Editing Spectrum in
    Ma S; Wang A; Chen X; Zhang T; Xing W; Xia Q
    CRISPR J; 2021 Jun; 4(3):371-380. PubMed ID: 34042501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis.
    Yan MY; Li SS; Ding XY; Guo XP; Jin Q; Sun YC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31992616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair.
    Du J; Yin N; Xie T; Zheng Y; Xia N; Shang J; Chen F; Zhang H; Yu J; Liu F
    DNA Repair (Amst); 2018 Oct; 70():67-71. PubMed ID: 30212742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-scale CRISPR screens are efficient in non-homologous end-joining deficient cells.
    Ferreira da Silva J; Salic S; Wiedner M; Datlinger P; Essletzbichler P; Hanzl A; Superti-Furga G; Bock C; Winter G; Loizou JI
    Sci Rep; 2019 Oct; 9(1):15751. PubMed ID: 31673055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.