These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35752415)

  • 1. Regional hypothalamic, amygdala, and midbrain periaqueductal gray matter recruitment during acute pain in awake humans: A 7-Tesla functional magnetic resonance imaging study.
    Robertson RV; Crawford LS; Meylakh N; Macey PM; Macefield VG; Keay KA; Henderson LA
    Neuroimage; 2022 Oct; 259():119408. PubMed ID: 35752415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed organisation of the human midbrain periaqueductal grey revealed using ultra-high field magnetic resonance imaging.
    Tinoco Mendoza FA; Hughes TES; Robertson RV; Crawford LS; Meylakh N; Macey PM; Macefield VG; Keay KA; Henderson LA
    Neuroimage; 2023 Feb; 266():119828. PubMed ID: 36549431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Involvement of Human Periaqueductal Gray and Other Midbrain Nuclei in Cognitive Control.
    Kragel PA; Bianciardi M; Hartley L; Matthewson G; Choi JK; Quigley KS; Wald LL; Wager TD; Feldman Barrett L; Satpute AB
    J Neurosci; 2019 Jul; 39(31):6180-6189. PubMed ID: 31160537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study.
    Snowball RK; Semenenko FM; Lumb BM
    Neuroscience; 2000; 99(2):351-61. PubMed ID: 10938441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain.
    Li JN; Sheets PL
    J Physiol; 2018 Dec; 596(24):6289-6305. PubMed ID: 30281797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex.
    Meeker TJ; Schmid AC; Keaser ML; Khan SA; Gullapalli RP; Dorsey SG; Greenspan JD; Seminowicz DA
    Neuroimage; 2022 Aug; 256():119278. PubMed ID: 35523367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic functional connectivity of periaqueductal gray subregions in humans.
    Coulombe MA; Erpelding N; Kucyi A; Davis KD
    Hum Brain Mapp; 2016 Apr; 37(4):1514-30. PubMed ID: 26821847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brainstem Mechanisms of Pain Modulation: A within-Subjects 7T fMRI Study of Placebo Analgesic and Nocebo Hyperalgesic Responses.
    Crawford LS; Mills EP; Hanson T; Macey PM; Glarin R; Macefield VG; Keay KA; Henderson LA
    J Neurosci; 2021 Nov; 41(47):9794-9806. PubMed ID: 34697093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 7-Tesla MRI study of the periaqueductal gray: resting state and task activation under threat.
    Weis CN; Bennett KP; Huggins AA; Parisi EA; Gorka SM; Larson C
    Soc Cogn Affect Neurosci; 2022 Feb; 17(2):187-197. PubMed ID: 34244809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord-midbrain functional connectivity is related to perceived pain intensity: a combined spino-cortical FMRI study.
    Sprenger C; Finsterbusch J; Büchel C
    J Neurosci; 2015 Mar; 35(10):4248-57. PubMed ID: 25762671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional subdivision of the human periaqueductal grey in respiratory control using 7 tesla fMRI.
    Faull OK; Jenkinson M; Clare S; Pattinson KT
    Neuroimage; 2015 Jun; 113():356-64. PubMed ID: 25703831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of discrete functional subregions of the human periaqueductal gray.
    Satpute AB; Wager TD; Cohen-Adad J; Bianciardi M; Choi JK; Buhle JT; Wald LL; Barrett LF
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):17101-6. PubMed ID: 24082116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia.
    Li H; Li X; Feng Y; Gao F; Kong Y; Hu L
    Neuroimage; 2020 Nov; 221():117186. PubMed ID: 32711060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortico-Brainstem Mechanisms of Biased Perceptual Decision-Making in the Context of Pain.
    Wiech K; Eippert F; Vandekerckhove J; Zaman J; Placek K; Tuerlinckx F; Vlaeyen JWS; Tracey I
    J Pain; 2022 Apr; 23(4):680-692. PubMed ID: 34856408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fMRI pain activation in the periaqueductal gray in healthy volunteers during the cold pressor test.
    La Cesa S; Tinelli E; Toschi N; Di Stefano G; Collorone S; Aceti A; Francia A; Cruccu G; Truini A; Caramia F
    Magn Reson Imaging; 2014 Apr; 32(3):236-40. PubMed ID: 24468081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcortical contributions to salience network functioning during negative emotional processing.
    Ince S; Steward T; Harrison BJ; Jamieson AJ; Davey CG; Agathos JA; Moffat BA; Glarin RK; Felmingham KL
    Neuroimage; 2023 Apr; 270():119964. PubMed ID: 36822252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disrupted functional connectivity of periaqueductal gray subregions in episodic migraine.
    Chen Z; Chen X; Liu M; Liu S; Ma L; Yu S
    J Headache Pain; 2017 Dec; 18(1):36. PubMed ID: 28321594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferents to the central nucleus of the amygdala and functional subdivisions of the periaqueductal gray: neuroanatomical substrates for affective behavior.
    Paredes J; Winters RW; Schneiderman N; McCabe PM
    Brain Res; 2000 Dec; 887(1):157-73. PubMed ID: 11134600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of functional connectivity to periaqueductal gray localization, with implications for identifying disease-related changes in chronic visceral pain: A MAPP Research Network neuroimaging study.
    Fenske SJ; Bierer D; Chelimsky G; Conant L; Ustine C; Yan K; Chelimsky T; Kutch JJ
    Neuroimage Clin; 2020; 28():102443. PubMed ID: 33027702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats.
    Shah YB; Haynes L; Prior MJ; Marsden CA; Morris PG; Chapman V
    Psychopharmacology (Berl); 2005 Aug; 180(4):761-73. PubMed ID: 15778889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.