These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 3575266)
1. [Effect of the medium composition on the accumulation of 2-keto-D-gluconic acid in Pseudomonas putida cultures]. Voloshenko MI; Disler EN; Komarova GV Prikl Biokhim Mikrobiol; 1987; 23(2):199-203. PubMed ID: 3575266 [TBL] [Abstract][Full Text] [Related]
2. [A comparative study of the formation of 2-keto-D-gluconic acid by free and immobilized cells of Pseudomonas putida]. Voloshenko MI; Disler EN; Koshcheenko KA Prikl Biokhim Mikrobiol; 1988; 24(6):779-83. PubMed ID: 3249741 [TBL] [Abstract][Full Text] [Related]
3. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Durner R; Zinn M; Witholt B; Egli T Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197 [TBL] [Abstract][Full Text] [Related]
5. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Buch A; Archana G; Naresh Kumar G Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187 [TBL] [Abstract][Full Text] [Related]
6. [Kinetics of ketogluconate formation in the gluconate-Stephenson medium in the presence of Serratia and Pseudomonas]. Denis F C R Seances Soc Biol Fil; 1970 Sep; 164(2):381-4. PubMed ID: 4249134 [No Abstract] [Full Text] [Related]
7. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M; Herrmann U; Bringer-Meyer S; Sahm H Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953 [TBL] [Abstract][Full Text] [Related]
8. Gluconate accumulation and enzyme activities with extremely nitrogen-limited surface cultures of Aspergillus niger. Müller HM Arch Microbiol; 1986 Mar; 144(2):151-7. PubMed ID: 3013115 [TBL] [Abstract][Full Text] [Related]
9. Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes NCTA 418. Neijssel OM; Tempest DW Arch Microbiol; 1975 Oct; 105(2):183-5. PubMed ID: 1106345 [TBL] [Abstract][Full Text] [Related]
10. Fermentation of glucose by Acetobacter melanogenus. Stroshane RM; Perlman D Biotechnol Bioeng; 1977 Apr; 19(4):459-65. PubMed ID: 15673 [TBL] [Abstract][Full Text] [Related]
11. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967 [TBL] [Abstract][Full Text] [Related]
12. [Effect of reduced concentrations of carbon, nitrogen, and phosphorus in a medium on growth of three dissociants of Pseudomonas aeruginosa]. Mil'ko ES; Il'inykh IA Mikrobiologiia; 2001; 70(5):607-10. PubMed ID: 11763778 [TBL] [Abstract][Full Text] [Related]
13. Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Latrach Tlemçani L; Corroler D; Barillier D; Mosrati R Arch Microbiol; 2008 Aug; 190(2):141-50. PubMed ID: 18493743 [TBL] [Abstract][Full Text] [Related]
15. Catabolism of D-glucose by Pseudomonas putida U occurs via extracellular transformation into D-gluconic acid and induction of a specific gluconate transport system. Schleissner C; Reglero A; Luengo JM Microbiology (Reading); 1997 May; 143 ( Pt 5)():1595-1603. PubMed ID: 9168611 [TBL] [Abstract][Full Text] [Related]
16. Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: batch versus chemostat production. Hartmann R; Hany R; Pletscher E; Ritter A; Witholt B; Zinn M Biotechnol Bioeng; 2006 Mar; 93(4):737-46. PubMed ID: 16255038 [TBL] [Abstract][Full Text] [Related]
17. [Organotrophic growth and the synthesis of an autoregulatory factor in Pseudomonas carboxydoflava]. Svetlichnyĭ VA; Savel'eva ND; Nekrasova VK; El'-Registan GI; Romanova AK Mikrobiologiia; 1982; 51(4):606-10. PubMed ID: 7144613 [TBL] [Abstract][Full Text] [Related]
18. Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Sun WJ; Zhou YZ; Zhou Q; Cui FJ; Yu SL; Sun L Bioresour Technol; 2012 Apr; 110():546-51. PubMed ID: 22326336 [TBL] [Abstract][Full Text] [Related]
19. [Glucose consumption and dehydrogenase activity of the cells of the arsenite-oxidizing bacterium Pseudomonas putida]. Abdrashitova SA; Abdullina GG; Ilialetdinov AN Mikrobiologiia; 1985; 54(4):679-81. PubMed ID: 4058329 [TBL] [Abstract][Full Text] [Related]
20. [Effect of carbon, nitrogen and phosphorus nutrition on the R, S, and M dissociants of Pseudomonas aeruginosa in mixed cultures]. Maksimov VN; Mil'ko ES; Il'inykh IA Mikrobiologiia; 1999; 68(4):485-90. PubMed ID: 10576089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]