These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35752674)

  • 41. A Hyperheuristic Approach for Location-Routing Problem of Cold Chain Logistics considering Fuel Consumption.
    Wang Z; Leng L; Wang S; Li G; Zhao Y
    Comput Intell Neurosci; 2020; 2020():8395754. PubMed ID: 32405298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Receding horizon control strategy for an electric vehicle with dual-motor coupling system in consideration of stochastic vehicle mass.
    Guo H; Shangguan J; Tang J; Sun Q; Wu H
    PLoS One; 2018; 13(10):e0205212. PubMed ID: 30308000
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon emission of energy consumption of the electric vehicle development scenario.
    Wang M; Wang Y; Chen L; Yang Y; Li X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The alternative path for fossil oil: Electric vehicles or hydrogen fuel cell vehicles?
    Zhang W; Fang X; Sun C
    J Environ Manage; 2023 Sep; 341():118019. PubMed ID: 37178543
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel bio-heuristic computing algorithm to solve the capacitated vehicle routing problem based on Adleman-Lipton model.
    Wang Z; Ren X; Ji Z; Huang W; Wu T
    Biosystems; 2019 Oct; 184():103997. PubMed ID: 31369836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.
    Ahn Y; Yeo H
    PLoS One; 2015; 10(11):e0141307. PubMed ID: 26575845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.
    Brinkman GL; Denholm P; Hannigan MP; Milford JB
    Environ Sci Technol; 2010 Aug; 44(16):6256-62. PubMed ID: 20704224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles.
    Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA
    Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading.
    Shen L; Tao F; Wang S
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30227626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.
    Kong Z; Zou Y; Liu T
    PLoS One; 2017; 12(7):e0180491. PubMed ID: 28671967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emergency logistics network optimization with time window assignment.
    Wang Y; Wang X; Fan J; Wang Z; Zhen L
    Expert Syst Appl; 2023 Mar; 214():119145. PubMed ID: 36339965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Joint optimization of green vehicle scheduling and routing problem with time-varying speeds.
    Zhang D; Wang X; Li S; Ni N; Zhang Z
    PLoS One; 2018; 13(2):e0192000. PubMed ID: 29466370
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions.
    Qin G; Tao F; Li L
    Int J Environ Res Public Health; 2019 Feb; 16(4):. PubMed ID: 30781502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Smart Scheduling of Electric Vehicles Based on Reinforcement Learning.
    Viziteu A; Furtună D; Robu A; Senocico S; Cioată P; Remus Baltariu M; Filote C; Răboacă MS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632127
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeted optimal-path problem for electric vehicles with connected charging stations.
    Fu F; Dong H
    PLoS One; 2019; 14(8):e0220361. PubMed ID: 31454350
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Impact of the Available Infrastructure on the Electric Vehicle Market in Poland and in EU Countries.
    Tucki K; Orynycz O; Dudziak A
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective.
    Shafique M; Luo X
    J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Factors that influence the expansion of electric delivery vehicles and trucks in EU countries.
    Osieczko K; Zimon D; Płaczek E; Prokopiuk I
    J Environ Manage; 2021 Oct; 296():113177. PubMed ID: 34246030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of the entropy-DEMATEL-VIKOR multicriteria decision-making method in public charging infrastructure.
    Dong H; Yang K
    PLoS One; 2021; 16(10):e0258209. PubMed ID: 34673810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.