These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35752702)

  • 1. Variational quantum evolution equation solver.
    Leong FY; Ewe WB; Koh DE
    Sci Rep; 2022 Jun; 12(1):10817. PubMed ID: 35752702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient quantum partial differential equation solver with chebyshev points.
    Oz F; San O; Kara K
    Sci Rep; 2023 May; 13(1):7767. PubMed ID: 37173401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods.
    Trahan CJ; Loveland M; Davis N; Ellison E
    Entropy (Basel); 2023 Mar; 25(4):. PubMed ID: 37190367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crank-Nicolson method for solving uncertain heat equation.
    Liu J; Hao Y
    Soft comput; 2022; 26(3):937-945. PubMed ID: 35002501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational algorithms for linear algebra.
    Xu X; Sun J; Endo S; Li Y; Benjamin SC; Yuan X
    Sci Bull (Beijing); 2021 Nov; 66(21):2181-2188. PubMed ID: 36654109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics.
    Dumbser M; Balsara DS; Tavelli M; Fambri F
    Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified implicit scheme for kinetic model equations. Part I. Memory reduction technique.
    Chen S; Zhang C; Zhu L; Guo Z
    Sci Bull (Beijing); 2017 Jan; 62(2):119-129. PubMed ID: 36659483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational Quantum Simulation of General Processes.
    Endo S; Sun J; Li Y; Benjamin SC; Yuan X
    Phys Rev Lett; 2020 Jul; 125(1):010501. PubMed ID: 32678631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
    Wang J; Li H; He S; Gao W; Liu Y
    ScientificWorldJournal; 2013; 2013():756281. PubMed ID: 23864831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-Solving Algorithm for d'Alembert Solutions of the Wave Equation.
    Zhu Y
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient quantum algorithm for dissipative nonlinear differential equations.
    Liu JP; Kolden HØ; Krovi HK; Loureiro NF; Trivisa K; Childs AM
    Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34446548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated Convergence of Contracted Quantum Eigensolvers through a Quasi-Second-Order, Locally Parameterized Optimization.
    Smart SE; Mazziotti DA
    J Chem Theory Comput; 2022 Sep; 18(9):5286-5296. PubMed ID: 36048172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Variational Ansatz for Taylorized Imaginary Time Evolution.
    Koch M; Schaudt O; Mogk G; Mrziglod T; Berg H; Beck ME
    ACS Omega; 2023 Jun; 8(25):22596-22602. PubMed ID: 37396204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Crank-Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity-stream functions.
    Zhou Y; Luo Z; Teng F
    J Inequal Appl; 2018; 2018(1):320. PubMed ID: 30839842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variational quantum imaginary time evolution for matrix product state Ansatz with tests on transcorrelated Hamiltonians.
    Li HE; Li X; Huang JC; Zhang GZ; Shen ZP; Zhao C; Li J; Hu HS
    J Chem Phys; 2024 Oct; 161(14):. PubMed ID: 39377325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adaptive variational algorithm for exact molecular simulations on a quantum computer.
    Grimsley HR; Economou SE; Barnes E; Mayhall NJ
    Nat Commun; 2019 Jul; 10(1):3007. PubMed ID: 31285433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communication-efficient algorithms for solving pressure Poisson equation for multiphase flows using parallel computers.
    Ghosh S; Lu J; Gupta V; Tryggvason G
    PLoS One; 2022; 17(11):e0277940. PubMed ID: 36413552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Convergence Analysis of the Frank-Kamenetskii Equation.
    Woolway M; Jacobs BA; Momoniat E; Harley C; Britz D
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.