BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35753099)

  • 1. Study on a terahertz biosensor based on graphene-metamaterial.
    Liu J; Fan L; Su J; Yang S; Luo H; Shen X; Ding F
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121527. PubMed ID: 35753099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency.
    Zhang Y; Feng Y; Zhu B; Zhao J; Jiang T
    Opt Express; 2014 Sep; 22(19):22743-52. PubMed ID: 25321743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.
    Wen QY; Xie YS; Zhang HW; Yang QH; Li YX; Liu YL
    Opt Express; 2009 Oct; 17(22):20256-65. PubMed ID: 19997251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Configurable metamaterial absorber with pseudo wideband spectrum.
    Zhu W; Huang Y; Rukhlenko ID; Wen G; Premaratne M
    Opt Express; 2012 Mar; 20(6):6616-21. PubMed ID: 22418545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model.
    Hokmabadi MP; Wilbert DS; Kung P; Kim SM
    Opt Express; 2013 Jul; 21(14):16455-65. PubMed ID: 23938496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach.
    Andryieuski A; Lavrinenko AV
    Opt Express; 2013 Apr; 21(7):9144-55. PubMed ID: 23572003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A close-ring pair terahertz metamaterial resonating at normal incidence.
    Gu J; Han J; Lu X; Singh R; Tian Z; Xing Q; Zhang W
    Opt Express; 2009 Oct; 17(22):20307-12. PubMed ID: 19997257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption.
    Othman MA; Guclu C; Capolino F
    Opt Express; 2013 Mar; 21(6):7614-32. PubMed ID: 23546145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Route to flexible metamaterial terahertz biosensor based on multi-resonance dips.
    Geng Z; Wang Z; Liu C
    Opt Express; 2022 Jul; 30(15):27418-27428. PubMed ID: 36236913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Based Controllable Broadband Terahertz Metamaterial Absorber with Transmission Band.
    Zhou Q; Zha S; Liu P; Liu C; Bian LA; Zhang J; Liu H; Ding L
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30501033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.
    Iwaszczuk K; Strikwerda AC; Fan K; Zhang X; Averitt RD; Jepsen PU
    Opt Express; 2012 Jan; 20(1):635-43. PubMed ID: 22274387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Dual-Band Terahertz Perfect Metamaterial Absorber Based on Circuit Theory.
    Liu Z; Guo L; Zhang Q
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A five-band absorber based on graphene metamaterial for terahertz ultrasensing.
    Jiang W; Chen T
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35016165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A perfect absorber made of a graphene micro-ribbon metamaterial.
    Alaee R; Farhat M; Rockstuhl C; Lederer F
    Opt Express; 2012 Dec; 20(27):28017-24. PubMed ID: 23263036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials.
    Du X; Zhang X; Wang Y; Ma G; Liu Y; Wang B; Mao H
    Opt Express; 2021 Oct; 29(22):36535-36545. PubMed ID: 34809062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low concentration noroxin detection using terahertz spectroscopy combined with metamaterial.
    Li B; Bai J; Zhang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119101. PubMed ID: 33181430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a Reconfigurable Ultra-Wideband Terahertz Polarization Rotator Based on Graphene Metamaterial.
    Ding G; Zhou Y; Zhang S; Luo X; Wang S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure.
    Fan J; Xiao D; Wang Q; Liu Q; Ouyang Z
    Appl Opt; 2017 May; 56(15):4388-4391. PubMed ID: 29047867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between graphene and metamaterials: split rings vs. wire pairs.
    Zou Y; Tassin P; Koschny T; Soukoulis CM
    Opt Express; 2012 May; 20(11):12198-204. PubMed ID: 22714208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.