BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 35753130)

  • 1. Subcritical water extraction of bioactive phenolic compounds from distillery stillage.
    Mikucka W; Zielinska M; Bulkowska K; Witonska I
    J Environ Manage; 2022 Sep; 318():115548. PubMed ID: 35753130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of Distillery Stillage to Recover Phenolic Compounds with Ultrasound-Assisted and Microwave-Assisted Extractions.
    Mikucka W; Zielinska M; Bulkowska K; Witonska I
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorization of distillery stillage by polyphenol recovery using microwave-assisted, ultrasound-assisted and conventional extractions.
    Mikucka W; Zielińska M; Bułkowska K; Witońska I
    J Environ Manage; 2022 Nov; 322():116150. PubMed ID: 36070645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of Bioactive Compounds from Pseuderanthemum palatiferum (Nees) Radlk. Using Subcritical Water and Conventional Solvents: A Comparison Study.
    Ho TC; Chun BS
    J Food Sci; 2019 May; 84(5):1201-1207. PubMed ID: 30942900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of polyphenols from distillery stillage by microwave-assisted, ultrasound-assisted and conventional solid-liquid extraction.
    Mikucka W; Zielinska M; Bulkowska K; Witonska I
    Sci Rep; 2022 Feb; 12(1):3232. PubMed ID: 35217709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidative Polyphenols of Canola Meal Extracted by High Pressure: Impact of Temperature and Solvents.
    Nandasiri R; Eskin NAM; Thiyam-Höllander U
    J Food Sci; 2019 Nov; 84(11):3117-3128. PubMed ID: 31663155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction.
    Krstić M; Teslić N; Bošković P; Obradović D; Zeković Z; Milić A; Pavlić B
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcritical Water Technology for Extraction of Phenolic Compounds from Chlorella sp. Microalgae and Assessment on Its Antioxidant Activity.
    Zakaria SM; Kamal SMM; Harun MR; Omar R; Siajam SI
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28671617
    [No Abstract]   [Full Text] [Related]  

  • 9. Exploring Phenolic Compounds Extraction from Saffron (
    Masala V; Jokić S; Aladić K; Molnar M; Tuberoso CIG
    Molecules; 2024 Jun; 29(11):. PubMed ID: 38893476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the effect of extraction methods on waste cotton (Gossypium hirsutum L.) flowers: metabolic profile, bioactive components, antioxidant, and α-amylase inhibition.
    Ma L; Dong R; Peng J; Tian X; Fang D; Xu S
    J Sci Food Agric; 2023 Oct; 103(13):6463-6472. PubMed ID: 37218075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcritical Water Extraction of Phenolic Compounds from Vaccinium Dunalianum Wight Leaves and Their Antioxidant and Tyrosinase Inhibitory Activities in Vitro.
    Yang X; Wang W; Jiang Q; Xie S; Zhao P; Liu Z; Zhu G; Xu J; Wang J; Li Y
    Chem Biodivers; 2023 May; 20(5):e202201099. PubMed ID: 37096966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of Yarrow (
    Vladić J; Jakovljević M; Molnar M; Vidović S; Tomić M; Drinić Z; Jokić S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32325741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Different Extraction Solvents for Characterization of Antioxidant Potential and Polyphenolic Composition in
    Fogarasi M; Socaciu MI; Sălăgean CD; Ranga F; Fărcaș AC; Socaci SA; Socaciu C; Țibulcă D; Fogarasi S; Semeniuc CA
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concept for the valorization of cereal processing waste: Recovery of phenolic acids by using waste-derived tetrahydrofurfuryl alcohol and biochar.
    Mikucka W; Witońska I; Zielińska M; Bułkowska K; Binczarski M
    Chemosphere; 2023 Feb; 313():137457. PubMed ID: 36470358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.
    Lores M; Pájaro M; Álvarez-Casas M; Domínguez J; García-Jares C
    Talanta; 2015 Aug; 140():134-142. PubMed ID: 26048835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents.
    Su D; Zhang R; Hou F; Zhang M; Guo J; Huang F; Deng Y; Wei Z
    BMC Complement Altern Med; 2014 Jan; 14():9. PubMed ID: 24405977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity.
    Bamba BSB; Shi J; Tranchant CC; Xue SJ; Forney CF; Lim LT
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29997308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology.
    Pinto D; Vieira EF; Peixoto AF; Freire C; Freitas V; Costa P; Delerue-Matos C; Rodrigues F
    Food Chem; 2021 Jan; 334():127521. PubMed ID: 32693333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Two Eco-Friendly Extractions of Black Medick (
    Jakupović L; Kalvarešin M; Bukovina K; Poljak V; Vujić L; Zovko Končić M
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799441
    [No Abstract]   [Full Text] [Related]  

  • 20.
    Bermúdez-Bazán M; Estarrón-Espinosa M; Castillo-Herrera GA; Escobedo-Reyes A; Urias-Silvas JE; Lugo-Cervantes E; Gschaedler-Mathis A
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.