These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Assessment of nanoindentation in stiffness measurement of soft biomaterials: kidney, liver, spleen and uterus. Wu G; Gotthardt M; Gollasch M Sci Rep; 2020 Nov; 10(1):18784. PubMed ID: 33139771 [TBL] [Abstract][Full Text] [Related]
7. A methodological framework for nanomechanical characterization of soft biomaterials and polymers. Arevalo SE; Ebenstein DM; Pruitt LA J Mech Behav Biomed Mater; 2022 Oct; 134():105384. PubMed ID: 35961240 [TBL] [Abstract][Full Text] [Related]
8. Determination of elastic moduli of elastic-plastic microspherical materials using nanoindentation simulation without mechanical polishing. Li H; Chen J Beilstein J Nanotechnol; 2021; 12():213-221. PubMed ID: 33728239 [TBL] [Abstract][Full Text] [Related]
9. Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression. Kaufman JD; Miller GJ; Morgan EF; Klapperich CM J Mater Res; 2008 May; 23(5):1472-1481. PubMed ID: 19081812 [TBL] [Abstract][Full Text] [Related]
10. Non-destructive vacuum-assisted measurement of lung elastic modulus. Chen J; Mir M; Pinezich MR; O'Neill JD; Guenthart BA; Bacchetta M; Vunjak-Novakovic G; Huang SXL; Kim J Acta Biomater; 2021 Sep; 131():370-380. PubMed ID: 34192570 [TBL] [Abstract][Full Text] [Related]
11. Practical method to determine the effective zero-point of indentation depth for continuous stiffness measurement nanoindentation test with Berkovich tip. Geng D; Yu H; Okuno Y; Kondo S; Kasada R Sci Rep; 2022 Apr; 12(1):6391. PubMed ID: 35430627 [TBL] [Abstract][Full Text] [Related]
12. Laser cavitation rheology for measurement of elastic moduli and failure strain within hydrogels. Luo JC; Ching H; Wilson BG; Mohraz A; Botvinick EL; Venugopalan V Sci Rep; 2020 Aug; 10(1):13144. PubMed ID: 32753667 [TBL] [Abstract][Full Text] [Related]
13. Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels. Kohn JC; Ebenstein DM J Mech Behav Biomed Mater; 2013 Apr; 20():316-26. PubMed ID: 23517775 [TBL] [Abstract][Full Text] [Related]
14. A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy. Tang B; Ngan AH; Pethica JB Nanotechnology; 2008 Dec; 19(49):495713. PubMed ID: 21730693 [TBL] [Abstract][Full Text] [Related]
15. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. Zhou ZL; Ngan AH; Tang B; Wang AX J Mech Behav Biomed Mater; 2012 Apr; 8():134-42. PubMed ID: 22402160 [TBL] [Abstract][Full Text] [Related]
16. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Norman MDA; Ferreira SA; Jowett GM; Bozec L; Gentleman E Nat Protoc; 2021 May; 16(5):2418-2449. PubMed ID: 33854255 [TBL] [Abstract][Full Text] [Related]
17. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. Kaufman JD; Klapperich CM J Mech Behav Biomed Mater; 2009 Aug; 2(4):312-7. PubMed ID: 19627837 [TBL] [Abstract][Full Text] [Related]
18. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. Zhu Y; Dong Z; Wejinya UC; Jin S; Ye K J Biomech; 2011 Sep; 44(13):2356-61. PubMed ID: 21794867 [TBL] [Abstract][Full Text] [Related]
19. Mechanical characterization of oligo(ethylene glycol)-based hydrogels by dynamic nanoindentation experiments. Guglielmi PO; Herbert EG; Tartivel L; Behl M; Lendlein A; Huber N; Lilleodden ET J Mech Behav Biomed Mater; 2015 Jun; 46():1-10. PubMed ID: 25746930 [TBL] [Abstract][Full Text] [Related]
20. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Xu Y; Li Z; Li X; Fan Z; Liu Z; Xie X; Guan J Acta Biomater; 2015 Oct; 26():23-33. PubMed ID: 26277379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]