BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35753424)

  • 1. PM
    Liu Y; Chen H; Yin C; Federici M; Perricone G; Li Y; Margaritis D; Shen Y; Guo J; Wei T
    Chemosphere; 2022 Oct; 305():135481. PubMed ID: 35753424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the change of brake wear particulate matter emissions through powertrain electrification in passenger vehicles.
    Hicks W; Green DC; Beevers S
    Environ Pollut; 2023 Nov; 336():122400. PubMed ID: 37595730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of braking conditions on nanoparticle emissions from passenger car friction brakes.
    Vojtíšek-Lom M; Vaculík M; Pechout M; Hopan F; Arul Raj AF; Penumarti S; Horák JS; Popovicheva O; Ondráček J; Doušová B
    Sci Total Environ; 2021 Sep; 788():147779. PubMed ID: 34034186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-resolved, quantitative evaluation of the magnetic mineralogy of airborne brake-wear particulate emissions.
    Gonet T; Maher BA; Nyirő-Kósa I; Pósfai M; Vaculík M; Kukutschová J
    Environ Pollut; 2021 Nov; 288():117808. PubMed ID: 34329055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of non-exhaust airborne particles from electric and internal combustion engine vehicles.
    Liu Y; Chen H; Gao J; Li Y; Dave K; Chen J; Federici M; Perricone G
    J Hazard Mater; 2021 Oct; 420():126626. PubMed ID: 34273888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brake wear particle emissions: a review.
    Grigoratos T; Martini G
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2491-504. PubMed ID: 25318420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories.
    Zhang J; Peng J; Song C; Ma C; Men Z; Wu J; Wu L; Wang T; Zhang X; Tao S; Gao S; Hopke PK; Mao H
    Environ Pollut; 2020 Nov; 266(Pt 2):115268. PubMed ID: 32836045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of brake activity measurement method for heavy-duty vehicles.
    Lopez B; Johnson K; Jung H
    J Air Waste Manag Assoc; 2023 Jul; 73(7):568-577. PubMed ID: 37093027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracer-Gas-Integrated Measurements of Brake-Wear Particulate Matter Emissions from Heavy-Duty Vehicles.
    Lee ES; Sahay K; O'Neil E; Biswas S; Dzhema I; Huang SM; Lin P; Chang MO; Huai T
    Environ Sci Technol; 2023 Oct; 57(42):15968-15978. PubMed ID: 37782561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of particulate matter emissions from non-passenger diesel vehicles in Qatar.
    Al-Thani H; Koç M; Fountoukis C; Isaifan RJ
    J Air Waste Manag Assoc; 2020 Feb; 70(2):228-242. PubMed ID: 31971491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions.
    Zum Hagen FHF; Mathissen M; Grabiec T; Hennicke T; Rettig M; Grochowicz J; Vogt R; Benter T
    Environ Sci Technol; 2019 May; 53(9):5143-5150. PubMed ID: 30935200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis.
    Woo SH; Jang H; Lee SB; Lee S
    Sci Total Environ; 2022 Oct; 842():156961. PubMed ID: 35760182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automotive brake wear: a review.
    Wahid SMS
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):174-180. PubMed ID: 29110235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining factors and parameterization of brake wear particle emission.
    Men Z; Zhang X; Peng J; Zhang J; Fang T; Guo Q; Wei N; Zhang Q; Wang T; Wu L; Mao H
    J Hazard Mater; 2022 Jul; 434():128856. PubMed ID: 35413517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions.
    Wihersaari H; Pirjola L; Karjalainen P; Saukko E; Kuuluvainen H; Kulmala K; Keskinen J; Rönkkö T
    Environ Pollut; 2020 Oct; 265(Pt B):114948. PubMed ID: 32554088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying factors affecting contributions of roadway exhaust and non-exhaust emissions to ambient PM
    Matthaios VN; Lawrence J; Martins MAG; Ferguson ST; Wolfson JM; Harrison RM; Koutrakis P
    Sci Total Environ; 2022 Aug; 835():155368. PubMed ID: 35460767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-world operation conditions and on-road emissions of Beijing diesel buses measured by using portable emission measurement system and electric low-pressure impactor.
    Liu Z; Ge Y; Johnson KC; Shah AN; Tan J; Wang C; Yu L
    Sci Total Environ; 2011 Mar; 409(8):1476-80. PubMed ID: 21295821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources.
    Iijima A; Sato K; Yano K; Kato M; Kozawa K; Furuta N
    Environ Sci Technol; 2008 Apr; 42(8):2937-42. PubMed ID: 18497147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of brake and tire wear particles based on real-world driving conditions.
    Zhang Q; Fang T; Men Z; Wei N; Peng J; Du T; Zhang X; Ma Y; Wu L; Mao H
    Sci Total Environ; 2024 Jan; 906():167764. PubMed ID: 37832679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.