These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35753450)

  • 21. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance.
    Erdal UG; Erdal ZK; Randall CW
    Water Sci Technol; 2003; 47(11):1-8. PubMed ID: 12906264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Achieving enhanced biological phosphorus removal utilizing waste activated sludge as sole carbon source and simultaneous sludge reduction in sequencing batch reactor.
    Fan Z; Zeng W; Meng Q; Liu H; Liu H; Peng Y
    Sci Total Environ; 2021 Dec; 799():149291. PubMed ID: 34364268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes.
    Marques R; Ribera-Guardia A; Santos J; Carvalho G; Reis MAM; Pijuan M; Oehmen A
    Water Res; 2018 Jun; 137():262-272. PubMed ID: 29550729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms.
    Oehmen A; Yuan Z; Blackall LL; Keller J
    Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying influent C/P ratios in EBPR systems.
    Majed N; Gu AZ
    Sci Total Environ; 2020 Nov; 743():140603. PubMed ID: 32758819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Lactate on the Microbial Community and Process Performance of an EBPR System.
    Rubio-Rincón FJ; Welles L; Lopez-Vazquez CM; Abbas B; van Loosdrecht MCM; Brdjanovic D
    Front Microbiol; 2019; 10():125. PubMed ID: 30833933
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs).
    Carvalheira M; Oehmen A; Carvalho G; Reis MAM
    Water Res; 2014 Nov; 64():149-159. PubMed ID: 25051162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater.
    Wang HG; Huang H; Liu RL; Mao YP; Biswal BK; Chen GH; Wu D
    Water Res; 2019 Dec; 167():115138. PubMed ID: 31585382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Population Structure and Morphotype Analysis of "
    Li C; Zeng W; Li N; Guo Y; Peng Y
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Butyrate can support PAOs but not GAOs in tropical climates.
    Wang L; Liu J; Oehmen A; Le C; Geng Y; Zhou Y
    Water Res; 2021 Apr; 193():116884. PubMed ID: 33556694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata with glucose as carbon source under aerobic conditions.
    He C; Wu H; Wei G; Zhu S; Qiu G; Wei C
    Bioresour Technol; 2024 Feb; 393():130048. PubMed ID: 37980947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accumulibacter diversity at the sub-clade level impacts enhanced biological phosphorus removal performance.
    Kolakovic S; Freitas EB; Reis MAM; Carvalho G; Oehmen A
    Water Res; 2021 Jul; 199():117210. PubMed ID: 34004444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs).
    Wang L; Shen N; Oehmen A; Zhou Y
    Environ Res; 2020 Sep; 188():109729. PubMed ID: 32521304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Demystifying polyphosphate-accumulating organisms relevant to wastewater treatment: A review of their phylogeny, metabolism, and detection.
    Ruiz-Haddad L; Ali M; Pronk M; van Loosdrecht MCM; Saikaly PE
    Environ Sci Ecotechnol; 2024 Sep; 21():100387. PubMed ID: 38322240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR).
    Motlagh AM; Bhattacharjee AS; Goel R
    Water Res; 2015 Sep; 81():1-14. PubMed ID: 26024959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems.
    Stokholm-Bjerregaard M; McIlroy SJ; Nierychlo M; Karst SM; Albertsen M; Nielsen PH
    Front Microbiol; 2017; 8():718. PubMed ID: 28496434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competition between polyphosphate- and glycogen-accumulating organisms in biological phosphorus removal systems--effect of temperature.
    Whang LM; Park JK
    Water Sci Technol; 2002; 46(1-2):191-4. PubMed ID: 12216623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors.
    Weissbrodt DG; Holliger C; Morgenroth E
    Biotechnol Bioeng; 2017 Aug; 114(8):1688-1702. PubMed ID: 28322436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of operational strategies on the performance of a photo-EBPR system.
    Carvalho VCF; Freitas EB; Silva PJ; Fradinho JC; Reis MAM; Oehmen A
    Water Res; 2018 Feb; 129():190-198. PubMed ID: 29149674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the performance of polyphosphate accumulating organisms in a full-scale side-stream enhanced biological phosphorous removal.
    Aghilinasrollahabadi K; Saffari Ghandehari S; Kjellerup BV; Nguyen C; Saavedra Y; Li G
    Water Environ Res; 2024 Jan; 96(1):e10961. PubMed ID: 38212140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.