BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35753464)

  • 1. Efficient phosphorus recovery as struvite by microbial electrolysis cell with stainless steel cathode: Struvite purity and experimental factors.
    Tai Y; Wang L; Hu Z; Dang Y; Guo Y; Ji X; Hu W; Li M
    Sci Total Environ; 2022 Oct; 843():156914. PubMed ID: 35753464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.
    Cusick RD; Ullery ML; Dempsey BA; Logan BE
    Water Res; 2014 May; 54():297-306. PubMed ID: 24583521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.
    Yuan P; Kim Y
    Biotechnol Biofuels; 2017; 10():70. PubMed ID: 28331546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus recovery from aqueous solution via a microbial electrolysis phosphorus-recovery cell.
    Wang Z; Zhang J; Hu X; Bian R; Xv Y; Deng R; Zhang Z; Xiang P; Xia S
    Chemosphere; 2020 Oct; 257():127283. PubMed ID: 32531492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.
    Almatouq A; Babatunde AO
    Bioresour Technol; 2017 Aug; 237():193-203. PubMed ID: 28254344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate recovery as struvite within a single chamber microbial electrolysis cell.
    Cusick RD; Logan BE
    Bioresour Technol; 2012 Mar; 107():110-5. PubMed ID: 22212692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment.
    Xie J; Zou X; Chang Y; Xie J; Liu H; Cui MH; Zhang TC; Chen C
    Sci Total Environ; 2023 Jan; 855():158912. PubMed ID: 36162577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous high-purity bioelectrochemical nitrogen recovery from high N-loaded wastewaters.
    Ul Z; Sulonen M; Baeza JA; Guisasola A
    Bioelectrochemistry; 2024 Aug; 158():108707. PubMed ID: 38653107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of struvite by magnesium anode constant voltage electrolytic crystallisation from anaerobically digested chicken manure slurry.
    Luo W; Fang Y; Song L; Niu Q
    Environ Res; 2022 Nov; 214(Pt 4):113991. PubMed ID: 35961546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrochemical acidolysis of magnesia to induce struvite crystallization for recovering phosphorus from aqueous solution.
    Wang Z; Zhang J; Guan X; She L; Xiang P; Xia S; Zhang Z
    J Environ Sci (China); 2019 Nov; 85():119-128. PubMed ID: 31471018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Struvite precipitation and phosphorus removal using magnesium sacrificial anode.
    Kruk DJ; Elektorowicz M; Oleszkiewicz JA
    Chemosphere; 2014 Apr; 101():28-33. PubMed ID: 24387911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio.
    Wang Y; Mou J; Liu X; Chang J
    Sci Total Environ; 2021 Oct; 789():147970. PubMed ID: 34323813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors.
    Almatouq A; Babatunde AO
    Int J Environ Res Public Health; 2016 Mar; 13(4):375. PubMed ID: 27043584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor.
    Guadie A; Xia S; Jiang W; Zhou L; Zhang Z; Hermanowicz SW; Xu X; Shen S
    J Environ Sci (China); 2014 Apr; 26(4):765-74. PubMed ID: 25079406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively.
    Sniatala B; Kurniawan TA; Sobotka D; Makinia J; Othman MHD
    Sci Total Environ; 2023 Jan; 856(Pt 2):159283. PubMed ID: 36208738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters.
    Lee SH; Yoo BH; Kim SK; Lim SJ; Kim JY; Kim TH
    J Hazard Mater; 2013 Oct; 261():29-37. PubMed ID: 23911826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant.
    Fattah KP; Mavinic DS; Koch FA; Jacob C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):756-64. PubMed ID: 18444078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of acetic acid on struvite precipitation: An exploration of product purity, morphology and reaction kinetics using central composite design.
    Zhang Z; Li B; Briechle MG; Wicaksana F; Yu W; Young B
    Chemosphere; 2021 Dec; 285():131486. PubMed ID: 34273697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced struvite generation and separation by magnesium anode electrolysis coupled with cathode electrodeposition.
    Wang L; Gu K; Zhang Y; Sun J; Gu Z; Zhao B; Hu C
    Sci Total Environ; 2022 Jan; 804():150101. PubMed ID: 34517320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water.
    Li X; Zhao X; Zhang J; Hao J; Zhang Q
    Water Res; 2022 Aug; 221():118678. PubMed ID: 35752092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.