BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35753664)

  • 1. Impact of aging on the pathophysiology of dry eye disease: A systematic review and meta-analysis.
    Kitazawa K; Inomata T; Shih K; Hughes JB; Bozza N; Tomioka Y; Numa K; Yokoi N; Campisi J; Dana R; Sotozono C
    Ocul Surf; 2022 Jul; 25():108-118. PubMed ID: 35753664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A new approach for better comprehension of diseases of the ocular surface].
    Baudouin C
    J Fr Ophtalmol; 2007 Mar; 30(3):239-46. PubMed ID: 17417148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urea transporter-B expression on the ocular surface and in the lacrimal glands.
    Jäger F; Paulsen F; Bergua A; Jungbauer R; Hammer CM
    Ann Anat; 2022 Aug; 243():151954. PubMed ID: 35537669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolactin Inducible Protein, but Not Prolactin, Is Present in Human Tears, Is Involved in Tear Film Quality, and Influences Evaporative Dry Eye Disease.
    Jüngert K; Paulsen F; Jacobi C; Horwath-Winter J; Garreis F
    Front Med (Lausanne); 2022; 9():892831. PubMed ID: 35847789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location and pattern of non-invasive keratographic tear film break-up according to dry eye disease subtypes.
    Kim J; Kim JY; Seo KY; Kim TI; Chin HS; Jung JW
    Acta Ophthalmol; 2019 Dec; 97(8):e1089-e1097. PubMed ID: 31062499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective optical assessment of tear-film quality dynamics in patients with meibomian gland dysfunction and aqueous-deficient dry eye optical quality changes in different dry eye subtypes.
    Ye F; Jiang F; Lu Y; Xue CY; Zhu XM; Wu Y; Huang ZP
    Indian J Ophthalmol; 2019 May; 67(5):599-603. PubMed ID: 31007216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review on the possible pathophysiological mechanisms underlying visual display terminal-associated dry eye disease.
    Fjaervoll K; Fjaervoll H; Magno M; Nøland ST; Dartt DA; Vehof J; Utheim TP
    Acta Ophthalmol; 2022 Dec; 100(8):861-877. PubMed ID: 35441459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in prostaglandin expression levels and synthesizing activities in dry eye disease.
    Shim J; Park C; Lee HS; Park MS; Lim HT; Chauhan S; Dana R; Lee H; Lee HK
    Ophthalmology; 2012 Nov; 119(11):2211-9. PubMed ID: 22858125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tear Lactoferrin and Features of Ocular Allergy in Different Severities of Meibomian Gland Dysfunction.
    Chao C; Tong L
    Optom Vis Sci; 2018 Oct; 95(10):930-936. PubMed ID: 30234832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research in dry eye: report of the Research Subcommittee of the International Dry Eye WorkShop (2007).
    Ocul Surf; 2007 Apr; 5(2):179-93. PubMed ID: 17508121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Dry Eye Disease on the Kinetics of Lacrimal Gland Dendritic Cells as Visualized by Intravital Multi-Photon Microscopy.
    Ortiz G; Chao C; Jamali A; Seyed-Razavi Y; Kenyon B; Harris DL; Zoukhri D; Hamrah P
    Front Immunol; 2020; 11():1713. PubMed ID: 32903439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Nano-ophthalmology in Treating Dry Eye Disease.
    Natesan S; Boddu SHS; Krishnaswami V; Shahwan M
    Pharm Nanotechnol; 2020; 8(4):258-289. PubMed ID: 32600244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix Metalloproteinase 9 Testing in Dry Eye Disease Using a Commercially Available Point-of-Care Immunoassay.
    Messmer EM; von Lindenfels V; Garbe A; Kampik A
    Ophthalmology; 2016 Nov; 123(11):2300-2308. PubMed ID: 27665213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiology of dry eye disease and novel therapeutic targets.
    Messmer EM
    Exp Eye Res; 2022 Apr; 217():108944. PubMed ID: 35077753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Analysis of Age-Related Changes in Lacrimal Glands and Meibomian Glands of a C57BL/6 Male Mouse Model.
    Yoon CH; Ryu JS; Hwang HS; Kim MK
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32545199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocular surface disease and dacryoadenitis in aging C57BL/6 mice.
    McClellan AJ; Volpe EA; Zhang X; Darlington GJ; Li DQ; Pflugfelder SC; de Paiva CS
    Am J Pathol; 2014 Mar; 184(3):631-43. PubMed ID: 24389165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular surface changes in mice with streptozotocin-induced diabetes and diabetic polyneuropathy.
    Schicht M; Farger J; Wedel S; Sisignano M; Scholich K; Geisslinger G; Perumal N; Grus FH; Singh S; Sahin A; Paulsen F; Lütjen-Drecoll E
    Ocul Surf; 2024 Jan; 31():43-55. PubMed ID: 38141818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunohistochemical detection of urea transporter-A in the tear-producing part of the lacrimal system.
    Jäger F; Paulsen F; Bergua A; Jungbauer R; Hammer CM
    Ann Anat; 2022 Oct; 244():151991. PubMed ID: 35987427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rabbit models of dry eye disease: Current understanding and unmet needs for translational research.
    Singh S; Sharma S; Basu S
    Exp Eye Res; 2021 May; 206():108538. PubMed ID: 33771517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Rabbit Model of Chronic Dry Eye Disease Induced by Complete Surgical Dacryoadenectomy.
    Honkanen R; Huang W; Huang L; Kaplowitz K; Weissbart S; Rigas B
    Curr Eye Res; 2019 Aug; 44(8):863-872. PubMed ID: 30983427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.