These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 35754239)

  • 1. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Kinematically Accurate Upper-Limb Exoskeleton Digital Twin for Stroke Rehabilitation.
    Ratschat A; Lomba TMC; Gasperina SD; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research status of lower limb exoskeleton rehabilitation robot].
    Li M; Li H; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):833-839. PubMed ID: 39218611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot.
    Zhang S; Fan L; Ye J; Chen G; Fu C; Leng Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3106-3117. PubMed ID: 37490379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot.
    Qin L; Ji H; Chen M; Wang K
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on the Motion Control Strategy of a Lower-Limb Exoskeleton Rehabilitation Robot Using the Twin Delayed Deep Deterministic Policy Gradient Algorithm.
    Guo Y; He M; Tong X; Zhang M; Huang L
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait.
    Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ALICE: Conceptual Development of a Lower Limb Exoskeleton Robot Driven by an On-Board Musculoskeletal Simulator.
    Cardona M; García Cena CE; Serrano F; Saltaren R
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative Metaheuristic Optimization Approach with a Bi-Triad for Rehabilitation Exoskeletons.
    Sosa Méndez D; García Cena CE; Bedolla-Martínez D; Martín González A
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.