These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 35754777)
1. A Wearable Mixed Reality Platform to Augment Overground Walking: A Feasibility Study. Evans E; Dass M; Muter WM; Tuthill C; Tan AQ; Trumbower RD Front Hum Neurosci; 2022; 16():868074. PubMed ID: 35754777 [TBL] [Abstract][Full Text] [Related]
2. Overground Walking in a Fully Immersive Virtual Reality: A Comprehensive Study on the Effects on Full-Body Walking Biomechanics. Horsak B; Simonlehner M; Schöffer L; Dumphart B; Jalaeefar A; Husinsky M Front Bioeng Biotechnol; 2021; 9():780314. PubMed ID: 34957075 [TBL] [Abstract][Full Text] [Related]
3. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148 [TBL] [Abstract][Full Text] [Related]
4. Virtual reality-enhanced walking in people post-stroke: effect of optic flow speed and level of immersion on the gait biomechanics. De Keersmaecker E; Van Bladel A; Zaccardi S; Lefeber N; Rodriguez-Guerrero C; Kerckhofs E; Jansen B; Swinnen E J Neuroeng Rehabil; 2023 Sep; 20(1):124. PubMed ID: 37749566 [TBL] [Abstract][Full Text] [Related]
5. Augmented Reality-Based Rehabilitation of Gait Impairments: Case Report. Held JPO; Yu K; Pyles C; Veerbeek JM; Bork F; Heining SM; Navab N; Luft AR JMIR Mhealth Uhealth; 2020 May; 8(5):e17804. PubMed ID: 32452815 [TBL] [Abstract][Full Text] [Related]
6. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation. Ammann-Reiffer C; Kläy A; Keller U JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316 [TBL] [Abstract][Full Text] [Related]
7. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. Yoon J; Park HS; Damiano DL J Neuroeng Rehabil; 2012 Aug; 9():62. PubMed ID: 22929169 [TBL] [Abstract][Full Text] [Related]
8. Ultrasound in augmented reality: a mixed-methods evaluation of head-mounted displays in image-guided interventions. Rüger C; Feufel MA; Moosburner S; Özbek C; Pratschke J; Sauer IM Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1895-1905. PubMed ID: 32725398 [TBL] [Abstract][Full Text] [Related]
9. Visual Feedback in Augmented Reality to Walk at Predefined Speed Cross-Sectional Study Including Children With Cerebral Palsy. Guinet AL; Bouyer G; Otmane S; Desailly E IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2322-2331. PubMed ID: 35951576 [TBL] [Abstract][Full Text] [Related]
10. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset. Martelli D; Xia B; Prado A; Agrawal SK Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606 [TBL] [Abstract][Full Text] [Related]
11. Eyes-free Target Acquisition During Walking in Immersive Mixed Reality. Zhou Q; Yu D; Reinoso MN; Newn J; Goncalves J; Velloso E IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3423-3433. PubMed ID: 32941144 [TBL] [Abstract][Full Text] [Related]
12. Gait patterns during overground and virtual omnidirectional treadmill walking. Lewis MM; Waltz C; Scelina L; Scelina K; Owen KM; Hastilow K; Zimmerman EM; Rosenfeldt AB; Miller Koop M; Alberts JL J Neuroeng Rehabil; 2024 Feb; 21(1):29. PubMed ID: 38388883 [TBL] [Abstract][Full Text] [Related]
13. A Video Self-Modeling Intervention Using Virtual Reality Plus Physical Practice for Freezing of Gait in Parkinson Disease: Feasibility and Acceptability Study. Goh L; Allen NE; Ahmadpour N; Ehgoetz Martens KA; Song J; Clemson L; Lewis SJG; MacDougall HG; Canning CG JMIR Form Res; 2021 Nov; 5(11):e28315. PubMed ID: 34730537 [TBL] [Abstract][Full Text] [Related]
15. Walking-adaptability therapy after stroke: results of a randomized controlled trial. Timmermans C; Roerdink M; Meskers CGM; Beek PJ; Janssen TWJ Trials; 2021 Dec; 22(1):923. PubMed ID: 34911566 [TBL] [Abstract][Full Text] [Related]
16. Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete spinal cord injury. Tan AQ; Sohn WJ; Naidu A; Trumbower RD Exp Neurol; 2021 Jun; 340():113669. PubMed ID: 33647273 [TBL] [Abstract][Full Text] [Related]
17. The Treadport: Natural Gait on a Treadmill. Chesebrough S; Hejrati B; Hollerbach J Hum Factors; 2019 Aug; 61(5):736-748. PubMed ID: 30653920 [TBL] [Abstract][Full Text] [Related]
18. Augmented visual feedback of movement performance to enhance walking recovery after stroke: study protocol for a pilot randomised controlled trial. Thikey H; Grealy M; van Wijck F; Barber M; Rowe P Trials; 2012 Sep; 13():163. PubMed ID: 22967674 [TBL] [Abstract][Full Text] [Related]
19. Age-related differences in gait adaptations during overground walking with and without visual perturbations using a virtual reality headset. Osaba MY; Martelli D; Prado A; Agrawal SK; Lalwani AK Sci Rep; 2020 Sep; 10(1):15376. PubMed ID: 32958807 [TBL] [Abstract][Full Text] [Related]
20. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. Hornby TG; Reisman DS; Ward IG; Scheets PL; Miller A; Haddad D; Fox EJ; Fritz NE; Hawkins K; Henderson CE; Hendron KL; Holleran CL; Lynskey JE; Walter A; J Neurol Phys Ther; 2020 Jan; 44(1):49-100. PubMed ID: 31834165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]