These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 35754777)
21. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment. Kannape OA; Barré A; Aminian K; Blanke O PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601 [TBL] [Abstract][Full Text] [Related]
22. Dual-Motor-Task of Catching and Throwing a Ball During Overground Walking in Virtual Reality. Singh Y; Prado A; Martelli D; Petros FE; Ai X; Mukherjee S; Lalwani AK; Vashista V; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1661-1667. PubMed ID: 32634103 [TBL] [Abstract][Full Text] [Related]
23. Characterization of speed adaptation while walking on an omnidirectional treadmill. Soni S; Lamontagne A J Neuroeng Rehabil; 2020 Nov; 17(1):153. PubMed ID: 33228761 [TBL] [Abstract][Full Text] [Related]
24. Performance of a visuomotor walking task in an augmented reality training setting. Haarman JAM; Choi JT; Buurke JH; Rietman JS; Reenalda J Hum Mov Sci; 2017 Dec; 56(Pt B):11-19. PubMed ID: 29096179 [TBL] [Abstract][Full Text] [Related]
25. Effects of adding a virtual reality environment to different modes of treadmill walking. Sloot LH; van der Krogt MM; Harlaar J Gait Posture; 2014 Mar; 39(3):939-45. PubMed ID: 24412269 [TBL] [Abstract][Full Text] [Related]
26. Motor adaptation to real-life external environments using immersive virtual reality: A pilot study. Paralkar S; Varas-Diaz G; Wang S; Bhatt T J Bodyw Mov Ther; 2020 Oct; 24(4):152-158. PubMed ID: 33218504 [TBL] [Abstract][Full Text] [Related]
27. Investigating the efficacy of a tactile feedback system to increase the gait speed of older adults. Hossain MT; Noghani MA; Sidaway B; Hejrati B Hum Mov Sci; 2023 Aug; 90():103103. PubMed ID: 37257391 [TBL] [Abstract][Full Text] [Related]
28. Visually-guided gait training in paretic patients during the first rehabilitation phase: study protocol for a randomized controlled trial. Rossano C; Terrier P Trials; 2016 Oct; 17(1):523. PubMed ID: 27788679 [TBL] [Abstract][Full Text] [Related]
29. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study. Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307 [TBL] [Abstract][Full Text] [Related]
30. Overground gait training using virtual reality aimed at gait symmetry. Shideler BL; Martelli D; Prado A; Agrawal SK Hum Mov Sci; 2021 Apr; 76():102770. PubMed ID: 33636570 [TBL] [Abstract][Full Text] [Related]
31. Use of real-time visual feedback during overground walking training on gait symmetry and velocity in patients with post-stroke hemiparesis: randomized controlled, single-blind study. Kim JS; Oh DW Int J Rehabil Res; 2020 Sep; 43(3):247-254. PubMed ID: 32459669 [TBL] [Abstract][Full Text] [Related]
32. Self-selected speed gait training in Parkinson's disease: robot-assisted gait training with virtual reality versus gait training on the ground. Fundarò C; Maestri R; Ferriero G; Chimento P; Taveggia G; Casale R Eur J Phys Rehabil Med; 2019 Aug; 55(4):456-462. PubMed ID: 30370751 [TBL] [Abstract][Full Text] [Related]
33. Virtual reality doorway and hallway environments alter gait kinematics in people with Parkinson disease and freezing. Besharat A; Imsdahl SI; Yamagami M; Nhan N; Bellatin O; Burden SA; Cummer K; Pradhan SD; Kelly VE Gait Posture; 2022 Feb; 92():442-448. PubMed ID: 34996008 [TBL] [Abstract][Full Text] [Related]
34. Evaluating the effect of immersive virtual reality technology on gait rehabilitation in stroke patients: a study protocol for a randomized controlled trial. Cai H; Lin T; Chen L; Weng H; Zhu R; Chen Y; Cai G Trials; 2021 Jan; 22(1):91. PubMed ID: 33494805 [TBL] [Abstract][Full Text] [Related]
35. Changes in Spatiotemporal Measures and Variability During User-Driven Treadmill, Fixed-Speed Treadmill, and Overground Walking in Young Adults: A Pilot Study. Holmes HH; Fawcett RT; Roper JA J Appl Biomech; 2021 Jun; 37(3):277-281. PubMed ID: 33931571 [TBL] [Abstract][Full Text] [Related]
36. Wearable Biofeedback System to Induce Desired Walking Speed in Overground Gait Training. Zhang H; Yin Y; Chen Z; Zhang Y; Rao AK; Guo Y; Zanotto D Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708450 [TBL] [Abstract][Full Text] [Related]
37. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy. Sloot LH; Harlaar J; van der Krogt MM Gait Posture; 2015 Oct; 42(4):498-504. PubMed ID: 26338532 [TBL] [Abstract][Full Text] [Related]
38. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning. Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S Front Robot AI; 2019; 6():50. PubMed ID: 33501066 [TBL] [Abstract][Full Text] [Related]
39. Immersive Virtual Reality to Restore Natural Long-Range Autocorrelations in Parkinson's Disease Patients' Gait During Treadmill Walking. Lheureux A; Lebleu J; Frisque C; Sion C; Stoquart G; Warlop T; Detrembleur C; Lejeune T Front Physiol; 2020; 11():572063. PubMed ID: 33071825 [TBL] [Abstract][Full Text] [Related]