These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35754843)

  • 1. DTI-BERT: Identifying Drug-Target Interactions in Cellular Networking Based on BERT and Deep Learning Method.
    Zheng J; Xiao X; Qiu WR
    Front Genet; 2022; 13():859188. PubMed ID: 35754843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using BERT to identify drug-target interactions from whole PubMed.
    Aldahdooh J; Vähä-Koskela M; Tang J; Tanoli Z
    BMC Bioinformatics; 2022 Jun; 23(1):245. PubMed ID: 35729494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Drug-Target Interaction Prediction Framework with Capsule Network and Transfer Learning.
    Huang Y; Huang HY; Chen Y; Lin YC; Yao L; Lin T; Leng J; Chang Y; Zhang Y; Zhu Z; Ma K; Cheng YN; Lee TY; Huang HD
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing drug-target interaction prediction: a comprehensive graph-based approach integrating knowledge graph embedding and ProtBert pretraining.
    Djeddi WE; Hermi K; Ben Yahia S; Diallo G
    BMC Bioinformatics; 2023 Dec; 24(1):488. PubMed ID: 38114937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences.
    Chen W; Chen G; Zhao L; Chen CY
    J Phys Chem A; 2021 Jul; 125(25):5633-5642. PubMed ID: 34142824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction.
    Yuan Y; Zhang Y; Meng X; Liu Z; Wang B; Miao R; Zhang R; Su W; Liu L
    J Mol Graph Model; 2023 Jul; 122():108498. PubMed ID: 37126908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fingerprints based molecular property prediction method using the BERT model.
    Wen N; Liu G; Zhang J; Zhang R; Fu Y; Han X
    J Cheminform; 2022 Oct; 14(1):71. PubMed ID: 36271394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.
    An JY; Meng FR; Yan ZJ
    BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRM-BERT: a novel deep neural network predictor of multiple RNA modifications by fusing BERT representation and sequence features.
    Wang L; Zhou Y
    RNA Biol; 2024 Jan; 21(1):1-10. PubMed ID: 38357904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network.
    Chen C; Shi H; Jiang Z; Salhi A; Chen R; Cui X; Yu B
    Comput Biol Med; 2021 Sep; 136():104676. PubMed ID: 34375902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-tuning of BERT Model to Accurately Predict Drug-Target Interactions.
    Kang H; Goo S; Lee H; Chae JW; Yun HY; Jung S
    Pharmaceutics; 2022 Aug; 14(8):. PubMed ID: 36015336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ameliorated Prediction of Drug-Target Interactions Based on Multi-Scale Discrete Wavelet Transform and Network Features.
    Shen C; Ding Y; Tang J; Xu X; Guo F
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28813000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning.
    Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of DrugTarget Interactions Using Chemical, Biological, and Network Features.
    Cao DS; Zhang LX; Tan GS; Xiang Z; Zeng WB; Xu QS; Chen AF
    Mol Inform; 2014 Oct; 33(10):669-81. PubMed ID: 27485302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepACTION: A deep learning-based method for predicting novel drug-target interactions.
    Hasan Mahmud SM; Chen W; Jahan H; Dai B; Din SU; Dzisoo AM
    Anal Biochem; 2020 Dec; 610():113978. PubMed ID: 33035462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method.
    Pan J; Li LP; You ZH; Yu CQ; Ren ZH; Chen Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.