These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 35754851)

  • 1. CD47-SIRPα-targeted therapeutics: status and prospects.
    Maute R; Xu J; Weissman IL
    Immunooncol Technol; 2022 Mar; 13():100070. PubMed ID: 35754851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the CD47-SIRPα axis for cancer therapy: A systematic review and meta-analysis of emerging clinical data.
    Son J; Hsieh RC; Lin HY; Krause KJ; Yuan Y; Biter AB; Welsh J; Curran MA; Hong DS
    Front Immunol; 2022; 13():1027235. PubMed ID: 36439116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CD47-SIRPα axis is a promising target for cancer immunotherapies.
    Hao Y; Zhou X; Li Y; Li B; Cheng L
    Int Immunopharmacol; 2023 Jul; 120():110255. PubMed ID: 37187126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The landscape overview of CD47-based immunotherapy for hematological malignancies.
    Yang H; Xun Y; You H
    Biomark Res; 2023 Feb; 11(1):15. PubMed ID: 36726125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preclinical characterization of the novel anti-SIRPα antibody BR105 that targets the myeloid immune checkpoint.
    Wu ZH; Li N; Mei XF; Chen J; Wang XZ; Guo TT; Chen G; Nie L; Chen Y; Jiang MZ; Wang JT; Wang HB
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35256517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blocking "don't eat me" signal of CD47-SIRPα in hematological malignancies, an in-depth review.
    Russ A; Hua AB; Montfort WR; Rahman B; Riaz IB; Khalid MU; Carew JS; Nawrocki ST; Persky D; Anwer F
    Blood Rev; 2018 Nov; 32(6):480-489. PubMed ID: 29709247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity.
    Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI
    J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIRPα-Fc fusion protein IMM01 exhibits dual anti-tumor activities by targeting CD47/SIRPα signal pathway via blocking the "don't eat me" signal and activating the "eat me" signal.
    Yu J; Li S; Chen D; Liu D; Guo H; Yang C; Zhang W; Zhang L; Zhao G; Tu X; Peng L; Liu S; Bai X; Song Y; Jiang Z; Zhang R; Tian W
    J Hematol Oncol; 2022 Nov; 15(1):167. PubMed ID: 36384978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy.
    Wang H; Sun Y; Zhou X; Chen C; Jiao L; Li W; Gou S; Li Y; Du J; Chen G; Zhai W; Wu Y; Qi Y; Gao Y
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33020240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer immunotherapy targeting the CD47/SIRPα axis.
    Weiskopf K
    Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD47-SIRPα blocking-based immunotherapy: Current and prospective therapeutic strategies.
    Bouwstra R; van Meerten T; Bremer E
    Clin Transl Med; 2022 Aug; 12(8):e943. PubMed ID: 35908284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of Anti-CD47 Peptides as Innate Immune Checkpoint Inhibitors.
    Mustafa B; Fetse J; Kandel S; Lin CY; Adhikary P; Mamani UF; Liu Y; Ibrahim MN; Alahmari M; Cheng K
    Adv Ther (Weinh); 2023 Dec; 6(12):. PubMed ID: 38655206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the CD47-SIRPα Innate Immune Checkpoint to Potentiate Antibody Therapy in Cancer by Neutrophils.
    Behrens LM; van den Berg TK; van Egmond M
    Cancers (Basel); 2022 Jul; 14(14):. PubMed ID: 35884427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pan-allelic human SIRPα-blocking antibody, ES004-B5, promotes tumor killing by enhancing macrophage phagocytosis and subsequently inducing an effective T-cell response.
    Niu X; Wang C; Jiang H; Gao R; Lu Y; Guo X; Zhou H; Cui X; Sun J; Qiu Q; Sun D; Lu H
    Antib Ther; 2024 Jul; 7(3):266-280. PubMed ID: 39257438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIRPα controls CD47-dependent platelet clearance in mice and humans.
    Shoham M; Yiu YY; Hansen PS; Subramaniam A; Broberg M; Gars E; Raveh T; FinnGen ; Weissman IL; Sinnott-Armstrong N; Krishnan A; Ollila HM; Tal MC
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting CD47-SIRPα axis for Hodgkin and non-Hodgkin lymphoma immunotherapy.
    Zhao P; Xie L; Yu L; Wang P
    Genes Dis; 2024 Jan; 11(1):205-217. PubMed ID: 37588232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting CD47 as a therapeutic strategy: A common bridge in the therapy of COVID-19-related cancers.
    Zandi M; Shafaati M; Shenagari M; Naziri H
    Heliyon; 2023 Jul; 9(7):e17959. PubMed ID: 37456027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD47/SIRPα axis: bridging innate and adaptive immunity.
    van Duijn A; Van der Burg SH; Scheeren FA
    J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35831032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opportunities and challenges for anti-CD47 antibodies in hematological malignancies.
    Xu Y; Jiang P; Xu Z; Ye H
    Front Immunol; 2024; 15():1348852. PubMed ID: 38464520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells.
    Tahk S; Vick B; Hiller B; Schmitt S; Marcinek A; Perini ED; Leutbecher A; Augsberger C; Reischer A; Tast B; Humpe A; Jeremias I; Subklewe M; Fenn NC; Hopfner KP
    J Hematol Oncol; 2021 Sep; 14(1):155. PubMed ID: 34579739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.