These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35754863)

  • 41. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of Porous Aromatic Frameworks with Exceptional Porosity via Building Unit Engineering.
    Li M; Ren H; Sun F; Tian Y; Zhu Y; Li J; Mu X; Xu J; Deng F; Zhu G
    Adv Mater; 2018 Oct; 30(43):e1804169. PubMed ID: 30260523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO
    Das SK; Bhanja P; Kundu SK; Mondal S; Bhaumik A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23813-23824. PubMed ID: 29956910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cavitand and Molecular Cage-Based Porous Organic Polymers.
    Giri A; Sahoo A; Dutta TK; Patra A
    ACS Omega; 2020 Nov; 5(44):28413-28424. PubMed ID: 33195892
    [TBL] [Abstract][Full Text] [Related]  

  • 45. N-rich porous organic polymers based on Schiff base reaction for CO
    Sang Y; Cao Y; Wang L; Yan W; Chen T; Huang J; Liu YN
    J Colloid Interface Sci; 2021 Apr; 587():121-130. PubMed ID: 33360884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of π-conjugated network polymers based on triphenylamine (TPA) and tetraphenylethylene (TPE) as building blocks
    Ma L; Ma H
    RSC Adv; 2019 Jun; 9(32):18098-18105. PubMed ID: 35515247
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pore topology analysis in porous molecular systems.
    Anipa V; Tarzia A; Jelfs KE; Alexandrov EV; Addicoat MA
    R Soc Open Sci; 2023 Feb; 10(2):220813. PubMed ID: 36778946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors.
    Sarkar C; Shit SC; Das N; Mondal J
    Chem Commun (Camb); 2021 Sep; 57(69):8550-8567. PubMed ID: 34369958
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Covalent Organic Frameworks: Pore Design and Interface Engineering.
    Li Z; He T; Gong Y; Jiang D
    Acc Chem Res; 2020 Aug; 53(8):1672-1685. PubMed ID: 32786335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calix[4]pyrrole-based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water.
    Xie L; Zheng Z; Lin Q; Zhou H; Ji X; Sessler JL; Wang H
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202113724. PubMed ID: 34747097
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microporous Carbon and Carbon/Metal Composite Materials Derived from Bio-Benzoxazine-Linked Precursor for CO
    Mohamed MG; Samy MM; Mansoure TH; Li CJ; Li WC; Chen JH; Zhang K; Kuo SW
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008773
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An evolutionary algorithm for the discovery of porous organic cages.
    Berardo E; Turcani L; Miklitz M; Jelfs KE
    Chem Sci; 2018 Dec; 9(45):8513-8527. PubMed ID: 30568775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume.
    Yildirim O; Tsaturyan A; Damin A; Nejrotti S; Crocellà V; Gallo A; Chierotti MR; Bonomo M; Barolo C
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15819-15831. PubMed ID: 36926827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Covalent Organic Frameworks with Record Pore Apertures.
    Mu Z; Zhu Y; Li B; Dong A; Wang B; Feng X
    J Am Chem Soc; 2022 Mar; 144(11):5145-5154. PubMed ID: 35258975
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption.
    Im JS; Park SJ; Kim TJ; Kim YH; Lee YS
    J Colloid Interface Sci; 2008 Feb; 318(1):42-9. PubMed ID: 17988675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.
    Xie LH; Suh MP
    Chemistry; 2013 Aug; 19(35):11590-7. PubMed ID: 23881821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pore structure of soot deposits from several combustion sources.
    Rockne KJ; Taghon GL; Kosson DS
    Chemosphere; 2000 Oct; 41(8):1125-35. PubMed ID: 10901237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.
    Qi C; Zhu YJ; Lu BQ; Zhao XY; Zhao J; Chen F; Wu J
    Chemistry; 2013 Apr; 19(17):5332-41. PubMed ID: 23460360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS) Based Hybrid Porous Materials for CO
    Gamal Mohamed M; Tsai MY; Wang CF; Huang CF; Danko M; Dai L; Chen T; Kuo SW
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33435232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.