These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35754914)

  • 21. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral selectivity of high-temperature solar absorbers.
    Trotter DM; Sievers AJ
    Appl Opt; 1980 Mar; 19(5):711-28. PubMed ID: 20220922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber.
    Selvakumar N; Krupanidhi SB; Barshilia HC
    Adv Mater; 2014 Apr; 26(16):2552-7. PubMed ID: 24474148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tungsten-based Ultrathin Absorber for Visible Regime.
    Rana AS; Mehmood MQ; Jeong H; Kim I; Rho J
    Sci Rep; 2018 Feb; 8(1):2443. PubMed ID: 29403065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR.
    Jiang X; Wang T; Zhong Q; Yan R; Huang X
    Nanotechnology; 2020 Jul; 31(31):315202. PubMed ID: 32289755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor.
    Rifat AA; Rahmani M; Xu L; Miroshnichenko AE
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29954060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical Study of Ultra-Broadband Metamaterial Perfect Absorber Based on Four-Corner Star Array.
    Cheng Y; Xiong M; Chen M; Deng S; Liu H; Teng C; Yang H; Deng H; Yuan L
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadband Near-Infrared Absorber Based on All Metallic Metasurface.
    Zhang K; Deng R; Song L; Zhang T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tungsten Based Spectrally Selective Absorbers with Anisotropic Rough Surface Texture.
    Pirouzfam N; Sendur K
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles.
    Liu C; Zhang D; Liu Y; Wu D; Chen L; Ma R; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2017 Nov; 12(1):601. PubMed ID: 29168003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing solar-thermal energy conversion with silicon-cored tungsten nanowire selective metamaterial absorbers.
    Chang JY; Taylor S; McBurney R; Ying X; Allu G; Chen YB; Wang L
    iScience; 2021 Jan; 24(1):101899. PubMed ID: 33364587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A New High-Temperature Durable Absorber Material Solution through a Spinel-Type High Solar Absorptivity Coating on Ti
    Wang W; Ye F; Mu W; Dutta J; Laumert B
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):45008-45017. PubMed ID: 34494820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metamaterial ultra-wideband solar absorbers based on a multi-layer structure with cross etching.
    Sun P; Feng H; Su L; Nie S; Li X; Zhou Y; Ran L; Gao Y
    Phys Chem Chem Phys; 2023 Apr; 25(14):10136-10142. PubMed ID: 36974981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadband wide-angle polarization-insensitive metasurface solar absorber.
    Heidari MH; Sedighy SH
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):522-525. PubMed ID: 29603979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems.
    Ijaz S; Rana AS; Ahmad Z; Rehman B; Zubair M; Mehmood MQ
    Opt Express; 2021 Sep; 29(20):31537-31548. PubMed ID: 34615245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.