These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35755261)

  • 1. Facile Fabrication of Hierarchically Porous Boronic Acid Group-Functionalized Monoliths With Optical Activity for Recognizing Glucose With Different Conformation.
    Wang Y; Zhang L; Hsu YI; Asoh TA; Uyama H
    Front Chem; 2022; 10():939368. PubMed ID: 35755261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Preparation of Hierarchically Porous Monolith with Optical Activity Based on Helical Substituted Polyacetylene via One-Step Synthesis for Enantioselective Crystallization.
    Wang Y; Zhang L; Asoh TA; Uyama H
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48020-48029. PubMed ID: 34592813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform.
    Xin Y; Xiong Q; Bai Q; Miyamoto M; Li C; Shen Y; Uyama H
    Carbohydr Polym; 2017 Feb; 157():429-437. PubMed ID: 27987947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of epoxy-functionalized hierarchically porous hybrid monoliths via free radical polymerization and application in HILIC enrichment of glycopeptides.
    Ma S; Zhang L; Wang S; Zhang H; You X; Ou J; Ye M; Wei Y
    Anal Chim Acta; 2019 Jun; 1058():97-106. PubMed ID: 30851859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Preparation of Titanium(IV)-Immobilized Hierarchically Porous Hybrid Monoliths.
    Zhang H; Ou J; Yao Y; Wang H; Liu Z; Wei Y; Ye M
    Anal Chem; 2017 Apr; 89(8):4655-4662. PubMed ID: 28316239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation.
    Cao Y; Han W; Pu Z; Wang X; Wang B; Liu C; Uyama H; Shen C
    RSC Adv; 2020 Jul; 10(44):26319-26325. PubMed ID: 35519741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation.
    Saba SA; Mousavi MP; Bühlmann P; Hillmyer MA
    J Am Chem Soc; 2015 Jul; 137(28):8896-9. PubMed ID: 26161727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological Properties of Methacrylate-Based Polymer Monoliths: From Gel Porosity to Macroscopic Inhomogeneities.
    Müllner T; Zankel A; Höltzel A; Svec F; Tallarek U
    Langmuir; 2017 Mar; 33(9):2205-2214. PubMed ID: 28186759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sol-gel preparation of titanium (IV)-immobilized hierarchically porous organosilica hybrid monoliths.
    Zhang H; Li X; Yao Y; Ma S; Liu Z; Ou J; Wei Y; Ye M
    Anal Chim Acta; 2019 Jan; 1046():199-207. PubMed ID: 30482300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boronic acid-fumed silica nanoparticles incorporated large surface area monoliths for protein separation by nano-liquid chromatography.
    Aydoğan C
    Anal Bioanal Chem; 2016 Nov; 408(29):8457-8466. PubMed ID: 27734137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal.
    Liu Z; Wang H; Ou J; Chen L; Ye M
    J Hazard Mater; 2018 Aug; 355():145-153. PubMed ID: 29783155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of fluorophenylboronic acid-functionalized monolithic columns for high affinity capture of cis-diol containing compounds.
    Li Q; Lü C; Liu Z
    J Chromatogr A; 2013 Aug; 1305():123-30. PubMed ID: 23885669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.
    Li W; Wang B; Yang W; Deng J
    Macromol Rapid Commun; 2015 Feb; 36(3):319-26. PubMed ID: 25490977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of a three-dimensional hydroxyapatite monolith for protein adsorption.
    Lyu Y; Asoh TA; Uyama H
    J Mater Chem B; 2021 Dec; 9(47):9711-9719. PubMed ID: 34779470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Porous Poly(3-hydroxybutyrate-
    Tsujimoto T; Hosoda N; Uyama H
    Polymers (Basel); 2016 Feb; 8(3):. PubMed ID: 30979161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal.
    Su H; Chong Y; Wang J; Long D; Qiao W; Ling L
    J Colloid Interface Sci; 2018 Jan; 510():77-85. PubMed ID: 28942067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.
    Maya F; Svec F
    J Chromatogr A; 2013 Nov; 1317():32-8. PubMed ID: 23910448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-Free Preparation of a Mesopore-Rich Hierarchically Porous Carbon Monolith from a Thermally Rearrangeable Polyurea Network.
    Nam J; Pak Y; Jung GY; Park JW
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions.
    Han J; Du Z; Zou W; Li H; Zhang C
    J Hazard Mater; 2014 Jul; 276():225-31. PubMed ID: 24892774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation.
    Lu X; Kanamori K; Nakanishi K
    Natl Sci Rev; 2020 Nov; 7(11):1656-1666. PubMed ID: 34691501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.