These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 35755350)

  • 1. Synthesis of Higher Alcohols from Syngas over a K-Modified CoMoS Catalyst Supported on Novel Powder and Fiber Commercial Activated Carbons.
    Osman ME; Maximov VV; Dipheko TD; Sheshko TF; Cherednichenko AG; Nikulshin PA; Kogan VM
    ACS Omega; 2022 Jun; 7(24):21346-21356. PubMed ID: 35755350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured NiMoS₂/Carbon Catalysts for Syngas Conversion to Higher Alcohols.
    Aslam W; Ma Q; Tang F; Chen J; Beltramini J; Rudolph V; Wang G; Konarova M
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5260-5266. PubMed ID: 32126728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohol Synthesis from CO
    Heyl D; Kreyenschulte C; Kondratenko VA; Bentrup U; Kondratenko EV; Brückner A
    ChemSusChem; 2019 Feb; 12(3):651-660. PubMed ID: 30451389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Comparative Catalytic Study of Zirconia-MnCO
    Assal ME; Kuniyil M; Khan M; Al-Warthan A; Siddiqui MR; Tremel W; Nawaz Tahir M; Adil SF
    ChemistryOpen; 2017 Feb; 6(1):112-120. PubMed ID: 28168156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of platinum doping on spent alkaline battery-based catalyst for complete oxidation of o-xylene.
    Park YK; Jung SC; Jung HY; Foong SY; Lam SS; Kim SC
    Environ Sci Pollut Res Int; 2021 May; 28(19):24552-24557. PubMed ID: 32533488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous Carbon Supported Rh Nanoparticle Catalysts for the Production of C2+ Alcohol from Syngas.
    Kim MJ; Kim TW; Chae HJ; Kim CU; Jeong SY; Kim JR; Ha KS
    J Nanosci Nanotechnol; 2016 Feb; 16(2):2004-9. PubMed ID: 27433718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of low carbon olefins on a core-shell K-Fe
    Liu Y; Shao W; Zheng Y; Zhang C; Zhou W; Zhang X; Liu Y
    RSC Adv; 2020 Jul; 10(44):26451-26459. PubMed ID: 35519778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol.
    Rostami-Vartooni A; Alizadeh M; Bagherzadeh M
    Beilstein J Nanotechnol; 2015; 6():2300-9. PubMed ID: 26732060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of calcination temperatures on the structure-activity relationship of Ni-La/Al
    Wu H; Zou M; Guo L; Ma F; Mo W; Yu Y; Mian I; Liu J; Yin S; Tsubaki N
    RSC Adv; 2020 Jan; 10(7):4166-4174. PubMed ID: 35492664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alumina Coated Silica Nanosprings (NS) Support Based Cobalt Catalysts for Liquid Hydrocarbon Fuel Production From Syngas.
    Alayat A; Echeverria E; Sotoudehniakarani F; Mcllroy DN; McDonald AG
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31167375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of Pd, Pt and Ru-Based Catalysts in Catalytic Oxidation of Methanol.
    Jung SC; Nahm SW; Jung HY; Park YK; Seo SG; Kim SC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):2088-91. PubMed ID: 27433735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Plasma-Synthesized Nano-Catalysts for CO Hydrogenation in Low-Temperature Fischer⁻Tropsch Synthesis: Effect of Catalyst Pre-Treatment.
    Aluha J; Gutierrez S; Gitzhofer F; Abatzoglou N
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Bimetallic Ni-Cr Catalysts for Steam-CO2 Reforming of Methane at High Pressure.
    Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5259-63. PubMed ID: 26373119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The selective catalytic reduction of NO over Ce
    Duan Z; Liu J; Shi J; Zhao Z; Wei Y; Zhang X; Jiang G; Duan A
    J Environ Sci (China); 2018 Mar; 65():1-7. PubMed ID: 29548380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition.
    Hu M; Cui B; Xiao B; Luo S; Guo D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.
    Andersson R; Boutonnet M; Järås S
    J Chromatogr A; 2012 Jul; 1247():134-45. PubMed ID: 22687712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal green synthesis of MoS
    Mulu M; RamaDevi D; Belachew N; Basavaiah K
    RSC Adv; 2021 Jul; 11(40):24536-24542. PubMed ID: 35481050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-cobalt catalysts supported on mechanically mixed HZSM-5 and γ-Al
    Ge X; Sun H; Dong K; Tao Y; Wang Q; Chen Y; Zhang G; Cui P; Wang Y; Zhang Q
    RSC Adv; 2019 May; 9(26):14592-14598. PubMed ID: 35516342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Synthesis of Defect-Rich CoMoS Catalysts with Different Morphologies for the Ultradeep Hydrodesulfurization of 4,6-Dimethydibenzothiophene.
    Niu X; Zhou W; Han Y; Liu Y
    Langmuir; 2021 Dec; 37(49):14254-14264. PubMed ID: 34860024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.