BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35755423)

  • 21. Dual bio-active factors with adhesion function modified electrospun fibrous scaffold for skin wound and infections therapeutics.
    Jiao J; Peng C; Li C; Qi Z; Zhan J; Pan S
    Sci Rep; 2021 Jan; 11(1):457. PubMed ID: 33432124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications.
    Coverdale BDM; Gough JE; Sampson WW; Hoyland JA
    J Biomed Mater Res A; 2017 Oct; 105(10):2865-2874. PubMed ID: 28608414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vascular Grafts with Tailored Stiffness and a Ligand Environment via Multiarmed Polymer Sheath for Expeditious Regeneration.
    Iglesias-Echevarria M; Johnson R; Rafuse M; Ding Y; Tan W
    ACS Appl Bio Mater; 2021 Jan; 4(1):545-558. PubMed ID: 34458689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delivery of VEGF using collagen-coated polycaprolactone scaffolds stimulates angiogenesis.
    Singh S; Wu BM; Dunn JC
    J Biomed Mater Res A; 2012 Mar; 100(3):720-7. PubMed ID: 22213643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repetitive Arg-Gly-Asp peptide as a cell-stimulating agent on electrospun poly(ϵ-caprolactone) scaffold for tissue engineering.
    Chaisri P; Chingsungnoen A; Siri S
    Biotechnol J; 2013 Nov; 8(11):1323-31. PubMed ID: 24039086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and characterization of PVA/CS-PCL/gel multi-scale electrospun scaffold: simulating extracellular matrix for enhanced cellular infiltration and proliferation.
    Dou Y; Fa X; Gu Y; Liang L; Wen J; Qin A; Ou J
    J Biomater Sci Polym Ed; 2020 Apr; 31(6):729-746. PubMed ID: 31928136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H; Lim DJ; Lee SH; Park H
    J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds.
    Zhang Y; Ouyang H; Lim CT; Ramakrishna S; Huang ZM
    J Biomed Mater Res B Appl Biomater; 2005 Jan; 72(1):156-65. PubMed ID: 15389493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties.
    Fadaie M; Mirzaei E; Geramizadeh B; Asvar Z
    Carbohydr Polym; 2018 Nov; 199():628-640. PubMed ID: 30143171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.
    Keivani F; Shokrollahi P; Zandi M; Irani S; F Shokrolahi ; Khorasani SC
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():78-88. PubMed ID: 27523999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RGD- and VEGF-Mimetic Peptide Epitope-Functionalized Self-Assembling Peptide Hydrogels Promote Dentin-Pulp Complex Regeneration.
    Xia K; Chen Z; Chen J; Xu H; Xu Y; Yang T; Zhang Q
    Int J Nanomedicine; 2020; 15():6631-6647. PubMed ID: 32982223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications.
    Augustine R; Nethi SK; Kalarikkal N; Thomas S; Patra CR
    J Mater Chem B; 2017 Jun; 5(24):4660-4672. PubMed ID: 32264308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering.
    Nagiah N; El Khoury R; Othman MH; Akimoto J; Ito Y; Roberson DA; Joddar B
    ACS Omega; 2022 Apr; 7(16):13894-13905. PubMed ID: 35559153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications.
    Guex AG; Hegemann D; Giraud MN; Tevaearai HT; Popa AM; Rossi RM; Fortunato G
    Colloids Surf B Biointerfaces; 2014 Nov; 123():724-33. PubMed ID: 25454657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF.
    Wang K; Chen X; Pan Y; Cui Y; Zhou X; Kong D; Zhao Q
    Biomed Res Int; 2015; 2015():865076. PubMed ID: 25883978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation.
    Ivanova AA; Syromotina DS; Shkarina SN; Shkarin R; Cecilia A; Weinhardt V; Baumbach T; Saveleva MS; Gorin DA; Douglas TEL; Parakhonskiy BV; Skirtach AG; Cools P; De Geyter N; Morent R; Oehr C; Surmeneva MA; Surmenev RA
    RSC Adv; 2018 Nov; 8(68):39106-39114. PubMed ID: 35558295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering.
    Heydarkhan-Hagvall S; Schenke-Layland K; Dhanasopon AP; Rofail F; Smith H; Wu BM; Shemin R; Beygui RE; MacLellan WR
    Biomaterials; 2008 Jul; 29(19):2907-14. PubMed ID: 18403012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.