These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 35755690)
1. Integrated Transcriptomic and Proteomic Analyses Uncover the Regulatory Mechanisms of Li L; Huang G; Xiang W; Zhu H; Zhang H; Zhang J; Ding Z; Liu J; Wu D Front Plant Sci; 2022; 13():924490. PubMed ID: 35755690 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic network underlying physiological alterations in the stem of Myricaria laxiflora in response to waterlogging stress. Li L; Su Y; Xiang W; Huang G; Liang Q; Dun B; Zhang H; Xiao Z; Qiu L; Zhang J; Wu D Ecotoxicol Environ Saf; 2024 Oct; 284():116991. PubMed ID: 39236657 [TBL] [Abstract][Full Text] [Related]
3. Diversity of endophytic fungi of Myricaria laxiflora grown under pre- and post-flooding conditions. Tian W; Bi YH; Zeng W; Jiang W; Xue YH; Wang GX; Liu SP Genet Mol Res; 2015 Sep; 14(3):10849-62. PubMed ID: 26400313 [TBL] [Abstract][Full Text] [Related]
4. Summer dormancy of Myricaria laxiflora to escape flooding stress: Changes in phytohormones and enzymes induced by environmental factors. Chen F; Wang N; Zhou J; Zhao Z; Lv K; Huang Y; Huang G; Qiu L Plant Physiol Biochem; 2022 Dec; 193():61-69. PubMed ID: 36327533 [TBL] [Abstract][Full Text] [Related]
5. High effects of climate oscillations on population diversity and structure of endangered Li H; Huang G; Qiu L; Liu J; Guo Y Front Plant Sci; 2024; 15():1338711. PubMed ID: 38481401 [TBL] [Abstract][Full Text] [Related]
6. Species-level phylogeographical history of Myricaria plants in the mountain ranges of western China and the origin of M. laxiflora in the Three Gorges mountain region. Liu Y; Wang Y; Huang H Mol Ecol; 2009 Jun; 18(12):2700-12. PubMed ID: 19457193 [TBL] [Abstract][Full Text] [Related]
8. Flooding Tolerance in Sweet Potato ( Park SU; Lee CJ; Park SC; Nam KJ; Lee KL; Kwak SS; Kim HS; Kim YH Antioxidants (Basel); 2022 Apr; 11(5):. PubMed ID: 35624742 [TBL] [Abstract][Full Text] [Related]
9. Morphological structures and histochemistry of roots and shoots in Li L; Wu D; Zhen Q; Zhang J; Qiu L; Huang G; Yang C Open Life Sci; 2021; 16(1):455-463. PubMed ID: 34017920 [No Abstract] [Full Text] [Related]
10. Proteomic analysis of soybean hypocotyl during recovery after flooding stress. Khan MN; Sakata K; Komatsu S J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724 [TBL] [Abstract][Full Text] [Related]
11. Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava. Ding Z; Fu L; Tie W; Yan Y; Wu C; Dai J; Zhang J; Hu W J Exp Bot; 2020 Dec; 71(22):7003-7017. PubMed ID: 32777039 [TBL] [Abstract][Full Text] [Related]
12. Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective. Ruperti B; Botton A; Populin F; Eccher G; Brilli M; Quaggiotti S; Trevisan S; Cainelli N; Guarracino P; Schievano E; Meggio F Front Plant Sci; 2019; 10():339. PubMed ID: 30972087 [TBL] [Abstract][Full Text] [Related]
13. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. Mustafa G; Sakata K; Hossain Z; Komatsu S J Proteomics; 2015 Jun; 122():100-18. PubMed ID: 25857275 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. Komatsu S; Yamamoto R; Nanjo Y; Mikami Y; Yunokawa H; Sakata K J Proteome Res; 2009 Oct; 8(10):4766-78. PubMed ID: 19658438 [TBL] [Abstract][Full Text] [Related]
16. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots. Khan MN; Sakata K; Hiraga S; Komatsu S J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625 [TBL] [Abstract][Full Text] [Related]
17. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir. Yang F; Wang Y; Chan Z PLoS One; 2014; 9(9):e108725. PubMed ID: 25265326 [TBL] [Abstract][Full Text] [Related]
18. Characterization of proteins in soybean roots under flooding and drought stresses. Oh M; Komatsu S J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361 [TBL] [Abstract][Full Text] [Related]
19. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress. Kamal AH; Komatsu S J Proteome Res; 2015 May; 14(5):2219-36. PubMed ID: 25806999 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of the effect of plant-derived smoke on soybean during recovery from flooding stress. Li X; Rehman SU; Yamaguchi H; Hitachi K; Tsuchida K; Yamaguchi T; Sunohara Y; Matsumoto H; Komatsu S J Proteomics; 2018 Jun; 181():238-248. PubMed ID: 29704570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]