BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 35755707)

  • 21. ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants.
    Pardo-Hernández M; López-Delacalle M; Rivero RM
    Antioxidants (Basel); 2020 Nov; 9(11):. PubMed ID: 33153156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melatonin and Its Effects on Plant Systems.
    Sharif R; Xie C; Zhang H; Arnao MB; Ali M; Ali Q; Muhammad I; Shalmani A; Nawaz MA; Chen P; Li Y
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30223442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.
    Hossain MA; Li ZG; Hoque TS; Burritt DJ; Fujita M; Munné-Bosch S
    Protoplasma; 2018 Jan; 255(1):399-412. PubMed ID: 28776104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario.
    Ali S; Gill RA; Shafique MS; Ahmar S; Kamran M; Zhang N; Riaz M; Nawaz M; Fang R; Ali B; Zhou W
    Front Plant Sci; 2022; 13():936747. PubMed ID: 36147242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melatonin: A Multifunctional Factor in Plants.
    Fan J; Xie Y; Zhang Z; Chen L
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29883400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase.
    Fan W; Zhang M; Zhang H; Zhang P
    PLoS One; 2012; 7(5):e37344. PubMed ID: 22615986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses.
    Wahab A; Muhammad M; Munir A; Abdi G; Zaman W; Ayaz A; Khizar C; Reddy SPP
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melatonin-Mediated Abiotic Stress Tolerance in Plants.
    Zeng W; Mostafa S; Lu Z; Jin B
    Front Plant Sci; 2022; 13():847175. PubMed ID: 35615125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator.
    Hasanuzzaman M; Bhuyan MHMB; Zulfiqar F; Raza A; Mohsin SM; Mahmud JA; Fujita M; Fotopoulos V
    Antioxidants (Basel); 2020 Jul; 9(8):. PubMed ID: 32751256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of melatonin in abiotic stress resistance in plants.
    Zhang N; Sun Q; Zhang H; Cao Y; Weeda S; Ren S; Guo YD
    J Exp Bot; 2015 Feb; 66(3):647-56. PubMed ID: 25124318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen sulfide: an emerging component against abiotic stress in plants.
    Raza A; Tabassum J; Mubarik MS; Anwar S; Zahra N; Sharif Y; Hafeez MB; Zhang C; Corpas FJ; Chen H
    Plant Biol (Stuttg); 2022 Jun; 24(4):540-558. PubMed ID: 34870354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses.
    Naing AH; Kim CK
    Physiol Plant; 2021 Jul; 172(3):1711-1723. PubMed ID: 33605458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants.
    Okant M; Kaya C
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11864-11874. PubMed ID: 30820918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exogenously applied melatonin enhanced the tolerance of Brassica napus against cobalt toxicity by modulating antioxidant defense, osmotic adjustment, and expression of stress response genes.
    Ali S; Gill RA; Ulhassan Z; Zhang N; Hussain S; Zhang K; Huang Q; Sagir M; Tahir MB; Gill MB; Mwamba TM; Ali B; Zhou W
    Ecotoxicol Environ Saf; 2023 Mar; 252():114624. PubMed ID: 36758507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review.
    Hosseinifard M; Stefaniak S; Ghorbani Javid M; Soltani E; Wojtyla Ł; Garnczarska M
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals.
    Moustafa-Farag M; Elkelish A; Dafea M; Khan M; Arnao MB; Abdelhamid MT; El-Ezz AA; Almoneafy A; Mahmoud A; Awad M; Li L; Wang Y; Hasanuzzaman M; Ai S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance.
    Akram NA; Shafiq F; Ashraf M
    Front Plant Sci; 2017; 8():613. PubMed ID: 28491070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aldehyde dehydrogenase 3I1 gene is recruited in conferring multiple abiotic stress tolerance in plants.
    Raza H; Khan MR; Zafar SA; Kirch HH; Bartles D
    Plant Biol (Stuttg); 2022 Jan; 24(1):85-94. PubMed ID: 34670007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.