These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35756027)

  • 1. Genome-Scale Mutational Analysis of Cathode-Oxidizing
    Sackett JD; Kamble N; Leach E; Schuelke T; Wilbanks E; Rowe AR
    Front Microbiol; 2022; 13():909824. PubMed ID: 35756027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioclava electrotropha sp. nov., a versatile electrode and sulfur-oxidizing bacterium from marine sediments.
    Chang R; Bird L; Barr C; Osburn M; Wilbanks E; Nealson K; Rowe A
    Int J Syst Evol Microbiol; 2018 May; 68(5):1652-1658. PubMed ID: 29570444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologic, Genomic, and Electrochemical Characterization of Two Heterotrophic Marine Sediment Microbes from the
    Vinales J; Sackett J; Trutschel L; Amir W; Norman C; Leach E; Wilbanks E; Rowe A
    Microorganisms; 2022 Jun; 10(6):. PubMed ID: 35744737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retracted: The bidirectional extracellular electron transfer process aids iron cycling by
    Yadav S; Sadhotra C; Patil SA
    Appl Environ Microbiol; 2023 Sep; ():e0060923. PubMed ID: 37681980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes.
    Ishii S; Suzuki S; Tenney A; Nealson KH; Bretschger O
    ISME J; 2018 Dec; 12(12):2844-2863. PubMed ID: 30050163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides.
    Chan CH; Levar CE; Jiménez-Otero F; Bond DR
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28674067
    [No Abstract]   [Full Text] [Related]  

  • 7. Extracellular electron transfer in fermentative bacterium Anoxybacter fermentans DY22613
    Li X; Zeng X; Qiu D; Zhang Z; Zhang X; Shao Z
    Sci Total Environ; 2020 Jun; 722():137723. PubMed ID: 32208240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Genomic Analysis of Neutrophilic Iron(II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer.
    He S; Barco RA; Emerson D; Roden EE
    Front Microbiol; 2017; 8():1584. PubMed ID: 28871245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse Microorganisms in Sediment and Groundwater Are Implicated in Extracellular Redox Processes Based on Genomic Analysis of Bioanode Communities.
    Arbour TJ; Gilbert B; Banfield JF
    Front Microbiol; 2020; 11():1694. PubMed ID: 32849356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria.
    Light SH; Su L; Rivera-Lugo R; Cornejo JA; Louie A; Iavarone AT; Ajo-Franklin CM; Portnoy DA
    Nature; 2018 Oct; 562(7725):140-144. PubMed ID: 30209391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.
    Rowe AR; Chellamuthu P; Lam B; Okamoto A; Nealson KH
    Front Microbiol; 2014; 5():784. PubMed ID: 25642220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in Applied Redox Potential on Cathodes Enrich for Diverse Electrochemically Active Microbial Isolates From a Marine Sediment.
    Lam BR; Barr CR; Rowe AR; Nealson KH
    Front Microbiol; 2019; 10():1979. PubMed ID: 31555224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing electron transfer components from an Fe(II) oxidizing bacterium.
    Jain A; Kalb MJ; Gralnick JA
    Microbiology (Reading); 2022 Sep; 168(9):. PubMed ID: 36111788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments.
    Lam BR; Rowe AR; Nealson KH
    Environ Microbiol; 2018 Jun; 20(6):2270-2287. PubMed ID: 29786168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress.
    Darus L; Ledezma P; Keller J; Freguia S
    Photosynth Res; 2016 Mar; 127(3):347-54. PubMed ID: 26407568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer.
    Yu L; Yuan Y; Rensing C; Zhou S
    Biosens Bioelectron; 2018 May; 106():21-28. PubMed ID: 29414084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hybrid Extracellular Electron Transfer Pathway Enhances the Survival of Vibrio natriegens.
    Conley BE; Weinstock MT; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737131
    [No Abstract]   [Full Text] [Related]  

  • 20. Redox-gradient driven electron transport in a mixed community anodic biofilm.
    Yates MD; Barr Engel S; Eddie BJ; Lebedev N; Malanoski AP; Tender LM
    FEMS Microbiol Ecol; 2018 Jun; 94(6):. PubMed ID: 29722806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.