These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35756374)

  • 1. Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform.
    Nambiar AMK; Breen CP; Hart T; Kulesza T; Jamison TF; Jensen KF
    ACS Cent Sci; 2022 Jun; 8(6):825-836. PubMed ID: 35756374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback in Flow for Accelerated Reaction Development.
    Reizman BJ; Jensen KF
    Acc Chem Res; 2016 Sep; 49(9):1786-96. PubMed ID: 27525813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Optimization of a Multistep, Multiphase Continuous Flow Process for Pharmaceutical Synthesis.
    Boyall SL; Clarke H; Dixon T; Davidson RWM; Leslie K; Clemens G; Muller FL; Clayton AD; Bourne RA; Chamberlain TW
    ACS Sustain Chem Eng; 2024 Oct; 12(41):15125-15133. PubMed ID: 39421637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digitising chemical synthesis in automated and robotic flow.
    Hardwick T; Ahmed N
    Chem Sci; 2020 Oct; 11(44):11973-11988. PubMed ID: 34094419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robotic platform for flow synthesis of organic compounds informed by AI planning.
    Coley CW; Thomas DA; Lummiss JAM; Jaworski JN; Breen CP; Schultz V; Hart T; Fishman JS; Rogers L; Gao H; Hicklin RW; Plehiers PP; Byington J; Piotti JS; Green WH; Hart AJ; Jamison TF; Jensen KF
    Science; 2019 Aug; 365(6453):. PubMed ID: 31395756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding Relevant Retrosynthetic Disconnections for Stereocontrolled Reactions.
    Wiest O; Bauer C; Helquist P; Norrby PO; Genheden S
    J Chem Inf Model; 2024 Aug; 64(15):5796-5805. PubMed ID: 38995078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerate Synthesis of Metal-Organic Frameworks by a Robotic Platform and Bayesian Optimization.
    Xie Y; Zhang C; Deng H; Zheng B; Su JW; Shutt K; Lin J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53485-53491. PubMed ID: 34709793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Real-Time Process Analytics for Multistep Synthesis in Continuous Flow*.
    Sagmeister P; Lebl R; Castillo I; Rehrl J; Kruisz J; Sipek M; Horn M; Sacher S; Cantillo D; Williams JD; Kappe CO
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8139-8148. PubMed ID: 33433918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Experimentation Powers Data Science in Chemistry.
    Shi Y; Prieto PL; Zepel T; Grunert S; Hein JE
    Acc Chem Res; 2021 Feb; 54(3):546-555. PubMed ID: 33471522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrosynthetic accessibility score (RAscore) - rapid machine learned synthesizability classification from AI driven retrosynthetic planning.
    Thakkar A; Chadimová V; Bjerrum EJ; Engkvist O; Reymond JL
    Chem Sci; 2021 Jan; 12(9):3339-3349. PubMed ID: 34164104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistep retrosynthesis combining a disconnection aware triple transformer loop with a route penalty score guided tree search.
    Kreutter D; Reymond JL
    Chem Sci; 2023 Sep; 14(36):9959-9969. PubMed ID: 37736648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous Multi-Step and Multi-Objective Optimization Facilitated by Real-Time Process Analytics.
    Sagmeister P; Ort FF; Jusner CE; Hebrault D; Tampone T; Buono FG; Williams JD; Kappe CO
    Adv Sci (Weinh); 2022 Apr; 9(10):e2105547. PubMed ID: 35106974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis.
    Mahjour B; Shen Y; Cernak T
    Acc Chem Res; 2021 May; 54(10):2337-2346. PubMed ID: 33891404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian Self-Optimization for Telescoped Continuous Flow Synthesis.
    Clayton AD; Pyzer-Knapp EO; Purdie M; Jones MF; Barthelme A; Pavey J; Kapur N; Chamberlain TW; Blacker AJ; Bourne RA
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214511. PubMed ID: 36346840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge.
    Ishida S; Terayama K; Kojima R; Takasu K; Okuno Y
    J Chem Inf Model; 2022 Mar; 62(6):1357-1367. PubMed ID: 35258953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the possibilities of designing a unified multistep continuous flow synthesis platform.
    Sharma MK; Acharya RB; Shukla CA; Kulkarni AA
    Beilstein J Org Chem; 2018; 14():1917-1936. PubMed ID: 30112097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles.
    Besenhard MO; Pal S; Storozhuk L; Dawes S; Thanh NTK; Norfolk L; Staniland S; Gavriilidis A
    Lab Chip; 2022 Dec; 23(1):115-124. PubMed ID: 36454245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated stopped-flow library synthesis for rapid optimisation and machine learning directed experimentation.
    Avila C; Cassani C; Kogej T; Mazuela J; Sarda S; Clayton AD; Kossenjans M; Green CP; Bourne RA
    Chem Sci; 2022 Oct; 13(41):12087-12099. PubMed ID: 36349112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.