These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 35756405)
21. Identification of significant genes as prognostic markers and potential tumor suppressors in lung adenocarcinoma via bioinformatical analysis. Lu M; Fan X; Liao W; Li Y; Ma L; Yuan M; Gu R; Wei Z; Wang C; Zhang H BMC Cancer; 2021 May; 21(1):616. PubMed ID: 34039311 [TBL] [Abstract][Full Text] [Related]
22. Identification of Hub Genes and Potential Pathogenesis in Gastric Cancer Based on Integrated Gene Expression Profile Analysis. Luu Truong Thanh H; Hoang TM; Hoang Van H Asian Pac J Cancer Prev; 2024 Mar; 25(3):885-892. PubMed ID: 38546071 [TBL] [Abstract][Full Text] [Related]
23. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
24. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis. Chen B; Sun D; Qin X; Gao XH Invest New Drugs; 2021 Aug; 39(4):928-948. PubMed ID: 33501609 [TBL] [Abstract][Full Text] [Related]
25. Identification of Key Genes in Gastric Cancer by Bioinformatics Analysis. Chong X; Peng R; Sun Y; Zhang L; Zhang Z Biomed Res Int; 2020; 2020():7658230. PubMed ID: 33015179 [TBL] [Abstract][Full Text] [Related]
26. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis. Yu C; Chen F; Jiang J; Zhang H; Zhou M Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250 [TBL] [Abstract][Full Text] [Related]
27. Extracellular Matrix-Related Hubs Genes Have Adverse Effects on Gastric Adenocarcinoma Prognosis Based on Bioinformatics Analysis. Alatan H; Chen Y; Zhou J; Wang L Genes (Basel); 2021 Jul; 12(7):. PubMed ID: 34356118 [TBL] [Abstract][Full Text] [Related]
28. Bioinformatics Analysis of Candidate Genes and Pathways Related to Hepatocellular Carcinoma in China: A Study Based on Public Databases. Zhang P; Feng J; Wu X; Chu W; Zhang Y; Li P Pathol Oncol Res; 2021; 27():588532. PubMed ID: 34257537 [No Abstract] [Full Text] [Related]
29. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
30. Identification of survival-associated biomarkers based on three datasets by bioinformatics analysis in gastric cancer. Yin LK; Yuan HY; Liu JJ; Xu XL; Wang W; Bai XY; Wang P World J Clin Cases; 2023 Jul; 11(20):4763-4787. PubMed ID: 37584004 [TBL] [Abstract][Full Text] [Related]
31. Integrated bioinformatics analysis of potential biomarkers for pancreatic cancer. Shi H; Xu H; Chai C; Qin Z; Zhou W J Clin Lab Anal; 2022 May; 36(5):e24381. PubMed ID: 35403252 [TBL] [Abstract][Full Text] [Related]
32. Comprehensive Analysis of Candidate Diagnostic and Prognostic Biomarkers Associated with Lung Adenocarcinoma. Li J; Liu X; Cui Z; Han G Med Sci Monit; 2020 Jun; 26():e922070. PubMed ID: 32578582 [TBL] [Abstract][Full Text] [Related]
33. Identification of hub genes and regulators associated with pancreatic ductal adenocarcinoma based on integrated gene expression profile analysis. Shang M; Zhang L; Chen X; Zheng S Discov Med; 2019 Sep; 28(153):159-172. PubMed ID: 31926587 [TBL] [Abstract][Full Text] [Related]
34. Identification of significant genes associated with prognosis of gastric cancer by bioinformatics analysis. Wang S; Tao S; Liu Y; Shi Y; Liu M J Egypt Natl Canc Inst; 2022 Dec; 34(1):55. PubMed ID: 36567425 [TBL] [Abstract][Full Text] [Related]
35. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
36. Identification of core genes and outcome in gastric cancer using bioinformatics analysis. Sun C; Yuan Q; Wu D; Meng X; Wang B Oncotarget; 2017 Sep; 8(41):70271-70280. PubMed ID: 29050278 [TBL] [Abstract][Full Text] [Related]
37. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis. Shen S; Kong J; Qiu Y; Yang X; Wang W; Yan L J Cell Biochem; 2019 Jun; 120(6):10069-10081. PubMed ID: 30525236 [TBL] [Abstract][Full Text] [Related]
38. Identification of key biomarkers and potential signaling pathway associated with poor progression of gastric cancer. Hu Y; Hu Z; Ding H; Li Y; Zhao X; Shao M; Pan Y Transl Cancer Res; 2020 Sep; 9(9):5459-5472. PubMed ID: 35117911 [TBL] [Abstract][Full Text] [Related]
39. Microarray gene expression profiling and bioinformatics analysis reveal key differentially expressed genes in clival and sacral chordoma cell lines. Li G; Cai L; Zhou L Neurol Res; 2019 Jun; 41(6):554-561. PubMed ID: 30821656 [TBL] [Abstract][Full Text] [Related]
40. Identification of key genes and biological pathways in lung adenocarcinoma via bioinformatics analysis. Wang Y; Zhou Z; Chen L; Li Y; Zhou Z; Chu X Mol Cell Biochem; 2021 Feb; 476(2):931-939. PubMed ID: 33130972 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]