These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35756872)

  • 1. Moth wings as sound absorber metasurface.
    Neil TR; Shen Z; Robert D; Drinkwater BW; Holderied MW
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20220046. PubMed ID: 35756872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moth wings are acoustic metamaterials.
    Neil TR; Shen Z; Robert D; Drinkwater BW; Holderied MW
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31134-31141. PubMed ID: 33229524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models for resonant acoustic metasurfaces with application to moth wing ultrasound absorption.
    Wang YT; Shen Z; Neil TR; Holderied MW; Skelton EA; Craster RV
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20220005. PubMed ID: 36209814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thoracic scales of moths as a stealth coating against bat biosonar.
    Neil TR; Shen Z; Robert D; Drinkwater BW; Holderied MW
    J R Soc Interface; 2020 Feb; 17(163):20190692. PubMed ID: 32093539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonplanar metasurface for perfect absorption of sound waves.
    Kim J; Jeon W
    J Acoust Soc Am; 2021 Apr; 149(4):2323. PubMed ID: 33940914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subwavelength broadband sound absorber based on a composite metasurface.
    Long H; Liu C; Shao C; Cheng Y; Chen K; Qiu X; Liu X
    Sci Rep; 2020 Aug; 10(1):13823. PubMed ID: 32796874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters.
    Gao YX; Lin YP; Zhu YF; Liang B; Yang J; Yang J; Cheng JC
    Sci Rep; 2020 Jul; 10(1):10705. PubMed ID: 32612130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subwavelength and quasi-perfect underwater sound absorber for multiple and broad frequency bands.
    Zhang Y; Pan J; Chen K; Zhong J
    J Acoust Soc Am; 2018 Aug; 144(2):648. PubMed ID: 30180693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of a moth scale at ultrasonic frequencies.
    Shen Z; Neil TR; Robert D; Drinkwater BW; Holderied MW
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12200-12205. PubMed ID: 30420499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoplasmonic Controlled Optical Absorber Based on a Liquid Crystal Metasurface.
    Petronella F; Madeleine T; De Mei V; Zaccagnini F; Striccoli M; D'Alessandro G; Rumi M; Slagle J; Kaczmarek M; De Sio L
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49468-49477. PubMed ID: 37816211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact broadband acoustic sink with coherently coupled weak resonances.
    Huang S; Zhou Z; Li D; Liu T; Wang X; Zhu J; Li Y
    Sci Bull (Beijing); 2020 Mar; 65(5):373-379. PubMed ID: 36659228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency multi-order acoustic absorber based on spiral metasurface.
    Kong D; Huang S; Li D; Cai C; Zhou Z; Liu B; Cao G; Chen X; Li Y; Liu S
    J Acoust Soc Am; 2021 Jul; 150(1):12. PubMed ID: 34340482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully-printed metamaterial-type flexible wings with controllable flight characteristics.
    Zhilyaev I; Anerao N; Kottapalli AGP; Yilmaz MC; Murat M; Ranjbar M; Krushynska A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34905740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acoustic performances of a subwavelength hierarchical honeycomb structure: Analytical, numerical, and experimental investigations.
    Chen W; Lu C; Wang X; Liu S
    J Acoust Soc Am; 2023 Mar; 153(3):1754. PubMed ID: 37002108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-sparse metamaterials absorber for broadband low-frequency sound with free ventilation.
    Shao C; Xiong W; Long H; Tao J; Cheng Y; Liu X
    J Acoust Soc Am; 2021 Aug; 150(2):1044. PubMed ID: 34470305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers.
    Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface.
    Zhong J; Zhao H; Yang H; Wang Y; Yin J; Wen J
    Sci Rep; 2019 Feb; 9(1):1181. PubMed ID: 30718565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.
    Xie Y; Wang W; Chen H; Konneker A; Popa BI; Cummer SA
    Nat Commun; 2014 Nov; 5():5553. PubMed ID: 25418084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.