These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35756873)

  • 1. Tailored acoustic metamaterials. Part I. Thin- and thick-walled Helmholtz resonator arrays.
    Smith MJA; Abrahams ID
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20220124. PubMed ID: 35756873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored acoustic metamaterials. Part II. Extremely thick-walled Helmholtz resonator arrays.
    Smith MJA; Abrahams ID
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20220125. PubMed ID: 35756874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymptotics of the meta-atom: plane wave scattering by a single Helmholtz resonator.
    Smith MJA; Cotterill PA; Nigro D; Parnell WJ; Abrahams ID
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210383. PubMed ID: 36209807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise.
    Hedayati R; Lakshmanan SP
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical approximations for low frequency band gaps in periodic arrays of elastic shells.
    Krynkin A; Umnova O; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2013 Feb; 133(2):781-91. PubMed ID: 23363097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broad omnidirectional acoustic band gaps in a three-dimensional phononic crystal composed of face-centered cubic Helmholtz resonator network.
    Biçer A; Korozlu N; Kaya OA; Cicek A
    J Acoust Soc Am; 2021 Sep; 150(3):1591. PubMed ID: 34598637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator.
    Bi S; Yang F; Tang S; Shen X; Zhang X; Zhu J; Yang X; Peng W; Yuan F
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave propagation in a duct with a periodic Helmholtz resonators array.
    Wang X; Mak CM
    J Acoust Soc Am; 2012 Feb; 131(2):1172-82. PubMed ID: 22352492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Performance Evaluation of the Helmholtz Resonator Inspired Acoustic Absorber Using Various Materials.
    Lee SH; Kang BS; Kim GM; Roh YR; Kwak MK
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33142730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling resonant arrays of the Helmholtz type in the time domain.
    Maurel A; Marigo JJ; Mercier JF; Pham K
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170894. PubMed ID: 29507525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipole Modes Excitation of uncoupled dark Plasmons Resonators based on Frequency Selective Surface at X-band Frequency Regime.
    Lan Y; Xu Y; Jia Y; Mei T; Qu S; Yan B; Yang D; Chen B; Xu R; Li Y
    Sci Rep; 2017 Aug; 7(1):9492. PubMed ID: 28842626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Helmholtz Resonators Using Multiple Necks.
    Papadakis NM; Stavroulakis GE
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pneumatically-Actuated Acoustic Metamaterials Based on Helmholtz Resonators.
    Hedayati R; Lakshmanan S
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of broadband Helmholtz resonator arrays using the radiation impedance method.
    Rajendran V; Piacsek A; Méndez Echenagucia T
    J Acoust Soc Am; 2022 Jan; 151(1):457. PubMed ID: 35105046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators.
    Zhang L; Xin F
    J Acoust Soc Am; 2022 Feb; 151(2):1191. PubMed ID: 35232096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.
    Yu G; Li D; Cheng L
    J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricting angles of incidence to improve super resolution in time reversal focusing that uses metamaterial properties of a resonator array.
    Basham A; Anderson BE; Kingsley AD
    J Acoust Soc Am; 2024 May; 155(5):3233-3241. PubMed ID: 38742962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus.
    Jing X; Meng Y; Sun X
    Sci Rep; 2015 Nov; 5():16110. PubMed ID: 26538085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass-spring model for acoustic metamaterials consisting of a compact linear periodic array of dead-end resonators.
    Lopez M; Dupont T; Panneton R
    J Acoust Soc Am; 2024 Jan; 155(1):530-543. PubMed ID: 38261300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metadiffusers: Deep-subwavelength sound diffusers.
    Jiménez N; Cox TJ; Romero-García V; Groby JP
    Sci Rep; 2017 Jul; 7(1):5389. PubMed ID: 28710374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.