These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35756875)

  • 1. Evidence for active upper mantle flow in the Atlantic and Indo-Australian realms since the Upper Jurassic from hiatus maps and spreading rate changes.
    Vilacís B; Hayek JN; Stotz IL; Bunge HP; Friedrich AM; Carena S; Clark S
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210764. PubMed ID: 35756875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continent-scale Hiatus Maps for the Atlantic Realm and Australia since the Upper Jurassic and links to mantle flow induced dynamic topography.
    Hayek JN; Vilacís B; Bunge HP; Friedrich AM; Carena S; Vibe Y
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200390. PubMed ID: 33223939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories.
    Bunge HP; Richards MA; Baumgardner JR
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2545-67. PubMed ID: 12460480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.
    Lin PY; Gaherty JB; Jin G; Collins JA; Lizarralde D; Evans RL; Hirth G
    Nature; 2016 Jul; 535(7613):538-41. PubMed ID: 27383792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean.
    Audhkhasi P; Singh SC
    Sci Adv; 2022 Jun; 8(24):eabn5404. PubMed ID: 35714195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.
    Hansen LN; Qi C; Warren JM
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10503-6. PubMed ID: 27606485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling.
    Rowley DB; Forte AM; Rowan CJ; Glišović P; Moucha R; Grand SP; Simmons NA
    Sci Adv; 2016 Dec; 2(12):e1601107. PubMed ID: 28028535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zoned mantle convection.
    Albarède F; Van Der Hilst RD
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2569-92. PubMed ID: 12460481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data.
    Ohira A; Kodaira S; Nakamura Y; Fujie G; Arai R; Miura S
    Sci Rep; 2017 Nov; 7(1):15770. PubMed ID: 29150652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continental collision slowing due to viscous mantle lithosphere rather than topography.
    Clark MK
    Nature; 2012 Feb; 483(7387):74-7. PubMed ID: 22382982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mantle flow distribution beneath the California margin.
    Barbot S
    Nat Commun; 2020 Sep; 11(1):4456. PubMed ID: 32901037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olivine water contents in the continental lithosphere and the longevity of cratons.
    Peslier AH; Woodland AB; Bell DR; Lazarov M
    Nature; 2010 Sep; 467(7311):78-81. PubMed ID: 20811455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adjoint equations for thermochemical compressible mantle convection: derivation and verification by twin experiments.
    Ghelichkhan S; Bunge HP
    Proc Math Phys Eng Sci; 2018 Dec; 474(2220):20180329. PubMed ID: 30602928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Relationship Between Oceanic Plate Speed, Tectonic Stress, and Seismic Anisotropy.
    Kendall E; Faccenda M; Ferreira AMG; Chang SJ
    Geophys Res Lett; 2022 Aug; 49(15):e2022GL097795. PubMed ID: 36247518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.
    Barry TL; Davies JH; Wolstencroft M; Millar IL; Zhao Z; Jian P; Safonova I; Price M
    Sci Rep; 2017 May; 7(1):1870. PubMed ID: 28500352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constraining the Range and Variation of Lithospheric Net Rotation Using Geodynamic Modeling.
    Atkins S; Coltice N
    J Geophys Res Solid Earth; 2021 Oct; 126(10):e2021JB022057. PubMed ID: 35866099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The depth distribution of azimuthal anisotropy in the continental upper mantle.
    Marone F; Romanowicz B
    Nature; 2007 May; 447(7141):198-201. PubMed ID: 17495924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subduction-driven recycling of continental margin lithosphere.
    Levander A; Bezada MJ; Niu F; Humphreys ED; Palomeras I; Thurner SM; Masy J; Schmitz M; Gallart J; Carbonell R; Miller MS
    Nature; 2014 Nov; 515(7526):253-6. PubMed ID: 25391963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.
    King SD; Ritsema J
    Science; 2000 Nov; 290(5494):1137-40. PubMed ID: 11073447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What drives tectonic plates?
    Coltice N; Husson L; Faccenna C; Arnould M
    Sci Adv; 2019 Oct; 5(10):eaax4295. PubMed ID: 31693727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.