These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 35756919)

  • 1. Machine Learning-Based Model for Prediction of Hemorrhage Transformation in Acute Ischemic Stroke After Alteplase.
    Xu Y; Li X; Wu D; Zhang Z; Jiang A
    Front Neurol; 2022; 13():897903. PubMed ID: 35756919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A weakly supervised deep learning model integrating noncontrasted computed tomography images and clinical factors facilitates haemorrhagic transformation prediction after intravenous thrombolysis in acute ischaemic stroke patients.
    Ru X; Zhao S; Chen W; Wu J; Yu R; Wang D; Dong M; Wu Q; Peng D; Song Y
    Biomed Eng Online; 2023 Dec; 22(1):129. PubMed ID: 38115029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Establishment and evaluation of a predictive model for early neurological deterioration after intravenous thrombolysis in acute ischemic stroke based on machine learning].
    Lyu Z; Yang H; Wang Y; Chen X; Zhang C; Wang W
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Sep; 35(9):945-950. PubMed ID: 37803953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Scores Predict the Value of Hemorrhagic Transformation after Intravenous Thrombolysis in Patients with Acute Ischemic Stroke.
    Chang X; Zhang X; Zhang G
    Evid Based Complement Alternat Med; 2021; 2021():2468052. PubMed ID: 34721622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symptomatic intracerebral hemorrhage after intravenous thrombolysis in Chinese patients: comparison of prediction models.
    Li M; Wang-Qin RQ; Wang YL; Liu LB; Pan YS; Liao XL; Wang YJ; Xu AD
    J Stroke Cerebrovasc Dis; 2015 Jun; 24(6):1235-43. PubMed ID: 25891755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new nomogram for individualized prediction of the probability of hemorrhagic transformation after intravenous thrombolysis for ischemic stroke patients.
    Wu Y; Chen H; Liu X; Cai X; Kong Y; Wang H; Zhou Y; Zhu J; Zhang L; Fang Q; Li T
    BMC Neurol; 2020 Nov; 20(1):426. PubMed ID: 33234113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based prediction of early neurological deterioration after intravenous thrombolysis for stroke: insights from a large multicenter study.
    Wen R; Wang M; Bian W; Zhu H; Xiao Y; Zeng J; He Q; Wang Y; Liu X; Shi Y; Zhang L; Hong Z; Xu B
    Front Neurol; 2024; 15():1408457. PubMed ID: 39314867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning-Based Model for Predicting Incidence and Severity of Acute Ischemic Stroke in Anterior Circulation Large Vessel Occlusion.
    Cui J; Yang J; Zhang K; Xu G; Zhao R; Li X; Liu L; Zhu Y; Zhou L; Yu P; Xu L; Li T; Tian J; Zhao P; Yuan S; Wang Q; Guo L; Liu X
    Front Neurol; 2021; 12():749599. PubMed ID: 34925213
    [No Abstract]   [Full Text] [Related]  

  • 9. Prediction of the development of acute kidney injury following cardiac surgery by machine learning.
    Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK
    Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravenous Thrombolysis for Acute Ischemic Stroke in Patients With Cardiac Myxoma: A Case Series and Pooled Analysis.
    Rao J; Tao Z; Bao Q; Jiang M; Zhou E; Cai X; Fu F
    Front Neurol; 2022; 13():893807. PubMed ID: 35645949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable Machine Learning Model Predicting Early Neurological Deterioration in Ischemic Stroke Patients Treated with Mechanical Thrombectomy: A Retrospective Study.
    Yang T; Hu Y; Pan X; Lou S; Zou J; Deng Q; Zhang Q; Zhou J; Zhu J
    Brain Sci; 2023 Mar; 13(4):. PubMed ID: 37190522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning-Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels.
    Chen X; Zeng Q; Tao L; Yuan J; Hang J; Lu G; Shao J; Li Y; Yu H
    World Neurosurg; 2024 Apr; 184():e695-e707. PubMed ID: 38340801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study.
    Su PY; Wei YC; Luo H; Liu CH; Huang WY; Chen KF; Lin CP; Wei HY; Lee TH
    JMIR Med Inform; 2022 Mar; 10(3):e32508. PubMed ID: 35072631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infarct-core CT perfusion parameters in predicting post-thrombolysis hemorrhagic transformation of acute ischemic stroke.
    Langel C; Popovic KS
    Radiol Oncol; 2019 Mar; 53(1):25-30. PubMed ID: 30864425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing machine learning models based on non-contrast CT radiomics to predict hemorrhagic transformation after stoke: a two-center study.
    Zhang Y; Xie G; Zhang L; Li J; Tang W; Wang D; Yang L; Li K
    Front Neurol; 2024; 15():1413795. PubMed ID: 39286806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study.
    Hu P; Li Y; Liu Y; Guo G; Gao X; Su Z; Wang L; Deng G; Yang S; Qi Y; Xu Y; Ye L; Sun Q; Nie X; Sun Y; Li M; Zhang H; Chen Q
    Front Aging Neurosci; 2022; 14():857521. PubMed ID: 35783143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nomogram prediction model for the risk of intracranial hemorrhagic transformation after intravenous thrombolysis in patients with acute ischemic stroke.
    Ma Y; Xu DY; Liu Q; Chen HC; Chai EQ
    Front Neurol; 2024; 15():1361035. PubMed ID: 38515444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Nomogram for Predicting the Risk of Intracranial Hemorrhage in Acute Ischemic Stroke Patients After Intravenous Thrombolysis.
    Weng ZA; Huang XX; Deng D; Yang ZG; Li SY; Zang JK; Li YF; Liu YF; Wu YS; Zhang TY; Su XL; Lu D; Xu AD
    Front Neurol; 2022; 13():774654. PubMed ID: 35359655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics-based prediction of hemorrhage expansion among patients with thrombolysis/thrombectomy related-hemorrhagic transformation using machine learning.
    Liu J; Tao W; Wang Z; Chen X; Wu B; Liu M
    Ther Adv Neurol Disord; 2021; 14():17562864211060029. PubMed ID: 35173809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostic values of serum alkaline phosphatase and globulin levels in patients undergoing intravenous thrombolysis.
    Zhu HJ; Sun X; Guo ZN; Qu Y; Sun YY; Jin H; Wang MQ; Xu BF; Yang Y
    Front Mol Neurosci; 2022; 15():932075. PubMed ID: 35909453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.